메뉴 건너뛰기




Volumn 8, Issue 5, 2017, Pages 2732-2744

Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search

Author keywords

Image analysis; Image processing; Optical coherence tomography

Indexed keywords

DEEP LEARNING; IMAGE ANALYSIS; IMAGE PROCESSING; NEURAL NETWORKS; OPHTHALMOLOGY; OPTICAL DATA PROCESSING; OPTICAL TOMOGRAPHY; TOMOGRAPHY;

EID: 85019034945     PISSN: None     EISSN: 21567085     Source Type: Journal    
DOI: 10.1364/BOE.8.002732     Document Type: Article
Times cited : (468)

References (63)
  • 2
    • 84874872773 scopus 로고    scopus 로고
    • 4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences
    • S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
    • (2013) IEEE Trans. Med. Imaging , vol.32 , Issue.3 , pp. 578-588
    • Bhat, S.1    Larina, I.V.2    Larin, K.V.3    Dickinson, M.E.4    Liebling, M.5
  • 3
    • 67649998896 scopus 로고    scopus 로고
    • Evaluation of optical coherence tomography retinal thickness parameters for use in clinical trials for neovascular age-related macular degeneration
    • P. A. Keane, S. Liakopoulos, R. V. Jivrajka, K. T. Chang, T. Alasil, A. C. Walsh, and S. R. Sadda, “Evaluation of optical coherence tomography retinal thickness parameters for use in clinical trials for neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 50(7), 3378–3385 (2009).
    • (2009) Invest. Ophthalmol. Vis. Sci , vol.50 , Issue.7 , pp. 3378-3385
    • Keane, P.A.1    Liakopoulos, S.2    Jivrajka, R.V.3    Chang, K.T.4    Alasil, T.5    Walsh, A.C.6    Sadda, S.R.7
  • 4
    • 79952317745 scopus 로고    scopus 로고
    • Evaluation of segmentation procedures using spectral domain optical coherence tomography in exudative agerelated macular degeneration
    • P. Malamos, C. Ahlers, G. Mylonas, C. Schütze, G. Deak, M. Ritter, S. Sacu, and U. Schmidt-Erfurth, “Evaluation of segmentation procedures using spectral domain optical coherence tomography in exudative agerelated macular degeneration,” Retina 31(3), 453–463 (2011).
    • (2011) Retina , vol.31 , Issue.3 , pp. 453-463
    • Malamos, P.1    Ahlers, C.2    Mylonas, G.3    Schütze, C.4    Deak, G.5    Ritter, M.6    Sacu, S.7    Schmidt-Erfurth, U.8
  • 5
    • 84942367248 scopus 로고    scopus 로고
    • Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images
    • P. P. Srinivasan, L. A. Kim, P. S. Mettu, S. W. Cousins, G. M. Comer, J. A. Izatt, and S. Farsiu, “Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images,” Biomed. Opt. Express 5(10), 3568–3577 (2014).
    • (2014) Biomed. Opt. Express , vol.5 , Issue.10 , pp. 3568-3577
    • Srinivasan, P.P.1    Kim, L.A.2    Mettu, P.S.3    Cousins, S.W.4    Comer, G.M.5    Izatt, J.A.6    Farsiu, S.7
  • 6
    • 84955447461 scopus 로고    scopus 로고
    • The effects of diabetic retinopathy and pan-retinal photocoagulation on photoreceptor cell function as assessed by dark adaptometry DR and PRP effects on photoreceptor cell function
    • J. C. Bavinger, G. E. Dunbar, M. S. Stem, T. S. Blachley, L. Kwark, S. Farsiu, G. R. Jackson, and T. W. Gardner, “The effects of diabetic retinopathy and pan-retinal photocoagulation on photoreceptor cell function as assessed by dark adaptometry DR and PRP effects on photoreceptor cell function,” Invest. Ophthalmol. Vis. Sci. 57(1), 208–217 (2016).
    • (2016) Invest. Ophthalmol. Vis. Sci , vol.57 , Issue.1 , pp. 208-217
    • Bavinger, J.C.1    Dunbar, G.E.2    Stem, M.S.3    Blachley, T.S.4    Kwark, L.5    Farsiu, S.6    Jackson, G.R.7    Gardner, T.W.8
  • 9
    • 84978173584 scopus 로고    scopus 로고
    • Macular sub-layer thinning and association with pulmonary function tests in Amyotrophic Lateral Sclerosis
    • J. M. Simonett, R. Huang, N. Siddique, S. Farsiu, T. Siddique, N. J. Volpe, and A. A. Fawzi, “Macular sub-layer thinning and association with pulmonary function tests in Amyotrophic Lateral Sclerosis,” Sci. Rep. 6(29187), 1–6 (2016).
    • (2016) Sci. Rep , vol.6 , Issue.29187 , pp. 1-6
    • Simonett, J.M.1    Huang, R.2    Siddique, N.3    Farsiu, S.4    Siddique, T.5    Volpe, N.J.6    Fawzi, A.A.7
  • 11
    • 85009742118 scopus 로고    scopus 로고
    • Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics optical coherence tomography angiography in diabetic patients
    • J. Polans, D. Cunefare, E. Cole, B. Keller, P. S. Mettu, S. W. Cousins, M. J. Allingham, J. A. Izatt, and S. Farsiu, “Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics optical coherence tomography angiography in diabetic patients,” Opt. Lett. 42(1), 17–20 (2017).
    • (2017) Opt. Lett , vol.42 , Issue.1 , pp. 17-20
    • Polans, J.1    Cunefare, D.2    Cole, E.3    Keller, B.4    Mettu, P.S.5    Cousins, S.W.6    Allingham, M.J.7    Izatt, J.A.8    Farsiu, S.9
  • 12
    • 85012302375 scopus 로고    scopus 로고
    • Segmentation based sparse reconstruction of optical coherence tomography images
    • L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE Trans. Med. Imaging 36(2), 407–421 (2017).
    • (2017) IEEE Trans. Med. Imaging , vol.36 , Issue.2 , pp. 407-421
    • Fang, L.1    Li, S.2    Cunefare, D.3    Farsiu, S.4
  • 13
    • 84930946316 scopus 로고    scopus 로고
    • 3-D adaptive sparsity based image compression with applications to optical coherence tomography
    • L. Fang, S. Li, X. Kang, J. A. Izatt, and S. Farsiu, “3-D adaptive sparsity based image compression with applications to optical coherence tomography,” IEEE Trans. Med. Imaging 34(6), 1306–1320 (2015).
    • (2015) IEEE Trans. Med. Imaging , vol.34 , Issue.6 , pp. 1306-1320
    • Fang, L.1    Li, S.2    Kang, X.3    Izatt, J.A.4    Farsiu, S.5
  • 14
    • 84856432070 scopus 로고    scopus 로고
    • A review of algorithms for segmentation of retinal image data using optical coherence tomography
    • InTech
    • D. C. DeBuc, “A review of algorithms for segmentation of retinal image data using optical coherence tomography,” in Image Segmentation (InTech, 2011), pp. 15–54.
    • (2011) Image Segmentation , pp. 15-54
    • Debuc, D.C.1
  • 15
    • 84880161116 scopus 로고    scopus 로고
    • Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map
    • R. Kafieh, H. Rabbani, M. D. Abramoff, and M. Sonka, “Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map,” Med. Image Anal. 17(8), 907–928 (2013).
    • (2013) Med. Image Anal , vol.17 , Issue.8 , pp. 907-928
    • Kafieh, R.1    Rabbani, H.2    Abramoff, M.D.3    Sonka, M.4
  • 16
    • 0035437720 scopus 로고    scopus 로고
    • Retinal thickness measurements from optical coherence tomography using a Markov boundary model
    • D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.9 , pp. 900-916
    • Koozekanani, D.1    Boyer, K.2    Roberts, C.3
  • 18
    • 27744580130 scopus 로고    scopus 로고
    • Retinal nerve fiber layer thickness map determined from optical coherence tomography images
    • M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
    • (2005) Opt. Express , vol.13 , Issue.23 , pp. 9480-9491
    • Mujat, M.1    Chan, R.2    Cense, B.3    Park, B.4    Joo, C.5    Akkin, T.6    Chen, T.7    De Boer, J.8
  • 19
    • 79960898014 scopus 로고    scopus 로고
    • Retinal nerve fiber layer segmentation on FDOCT scans of normal subjects and glaucoma patients
    • M. A. Mayer, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Retinal nerve fiber layer segmentation on FDOCT scans of normal subjects and glaucoma patients,” Biomed. Opt. Express 1(5), 1358–1383 (2010).
    • (2010) Biomed. Opt. Express , vol.1 , Issue.5 , pp. 1358-1383
    • Mayer, M.A.1    Hornegger, J.2    Mardin, C.Y.3    Tornow, R.P.4
  • 21
    • 84961786425 scopus 로고    scopus 로고
    • Automated geographic atrophy segmentation for SD-OCT images using region-based C-V model via local similarity factor
    • S. Niu, L. de Sisternes, Q. Chen, T. Leng, and D. L. Rubin, “Automated geographic atrophy segmentation for SD-OCT images using region-based C-V model via local similarity factor,” Biomed. Opt. Express 7(2), 581–600 (2016).
    • (2016) Biomed. Opt. Express , vol.7 , Issue.2 , pp. 581-600
    • Niu, S.1    De Sisternes, L.2    Chen, Q.3    Leng, T.4    Rubin, D.L.5
  • 22
    • 85008932614 scopus 로고    scopus 로고
    • Multi-surface segmentation of OCT images with AMD using sparse high order potentials
    • J. Oliveira, S. Pereira, L. Gonçalves, M. Ferreira, and C. A. Silva, “Multi-surface segmentation of OCT images with AMD using sparse high order potentials,” Biomed. Opt. Express 8(1), 281–297 (2017).
    • (2017) Biomed. Opt. Express , vol.8 , Issue.1 , pp. 281-297
    • Oliveira, J.1    Pereira, S.2    Gonçalves, L.3    Ferreira, M.4    Silva, C.A.5
  • 23
    • 77956360101 scopus 로고    scopus 로고
    • Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation
    • S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    • (2010) Opt. Express , vol.18 , Issue.18 , pp. 19413-19428
    • Chiu, S.J.1    Li, X.T.2    Nicholas, P.3    Toth, C.A.4    Izatt, J.A.5    Farsiu, S.6
  • 24
    • 84863916285 scopus 로고    scopus 로고
    • Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming
    • S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
    • (2012) Biomed. Opt. Express , vol.3 , Issue.5 , pp. 1127-1140
    • Chiu, S.J.1    Toth, C.A.2    Bowes Rickman, C.3    Izatt, J.A.4    Farsiu, S.5
  • 25
    • 84862802188 scopus 로고    scopus 로고
    • Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming
    • F. LaRocca, S. J. Chiu, R. P. McNabb, A. N. Kuo, J. A. Izatt, and S. Farsiu, “Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming,” Biomed. Opt. Express 2(6), 1524–1538 (2011).
    • (2011) Biomed. Opt. Express , vol.2 , Issue.6 , pp. 1524-1538
    • Larocca, F.1    Chiu, S.J.2    McNabb, R.P.3    Kuo, A.N.4    Izatt, J.A.5    Farsiu, S.6
  • 26
    • 84864616479 scopus 로고    scopus 로고
    • Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: Probability constrained graph-search-graph-cut
    • X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abràmoff, and M. Sonka, “Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut,” IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012).
    • (2012) IEEE Trans. Med. Imaging , vol.31 , Issue.8 , pp. 1521-1531
    • Chen, X.1    Niemeijer, M.2    Zhang, L.3    Lee, K.4    Abràmoff, M.D.5    Sonka, M.6
  • 27
    • 84980018868 scopus 로고    scopus 로고
    • Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images
    • B. Keller, D. Cunefare, D. S. Grewal, T. H. Mahmoud, J. A. Izatt, and S. Farsiu, “Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images,” J. Biomed. Opt. 21(7), 076015 (2016).
    • (2016) J. Biomed. Opt , vol.21 , Issue.7
    • Keller, B.1    Cunefare, D.2    Grewal, D.S.3    Mahmoud, T.H.4    Izatt, J.A.5    Farsiu, S.6
  • 28
    • 84942436789 scopus 로고    scopus 로고
    • Real-time automatic segmentation of optical coherence tomography volume data of the macular region
    • J. Tian, B. Varga, G. M. Somfai, W.-H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
    • (2015) Plos One , vol.10 , Issue.8
    • Tian, J.1    Varga, B.2    Somfai, G.M.3    Lee, W.-H.4    Smiddy, W.E.5    Debuc, D.C.6
  • 29
    • 84893591763 scopus 로고    scopus 로고
    • Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology
    • P. P. Srinivasan, S. J. Heflin, J. A. Izatt, V. Y. Arshavsky, and S. Farsiu, “Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology,” Biomed. Opt. Express 5(2), 348–365 (2014).
    • (2014) Biomed. Opt. Express , vol.5 , Issue.2 , pp. 348-365
    • Srinivasan, P.P.1    Heflin, S.J.2    Izatt, J.A.3    Arshavsky, V.Y.4    Farsiu, S.5
  • 30
    • 84977123156 scopus 로고    scopus 로고
    • Learning layer-specific edges for segmenting retinal layers with large deformations
    • S. P. K. Karri, D. Chakraborthi, and J. Chatterjee, “Learning layer-specific edges for segmenting retinal layers with large deformations,” Biomed. Opt. Express 7(7), 2888–2901 (2016).
    • (2016) Biomed. Opt. Express , vol.7 , Issue.7 , pp. 2888-2901
    • Karri, S.P.K.1    Chakraborthi, D.2    Chatterjee, J.3
  • 31
    • 84861159304 scopus 로고    scopus 로고
    • Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa
    • Q. Yang, C. A. Reisman, K. Chan, R. Ramachandran, A. Raza, and D. C. Hood, “Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa,” Biomed. Opt. Express 2(9), 2493–2503 (2011).
    • (2011) Biomed. Opt. Express , vol.2 , Issue.9 , pp. 2493-2503
    • Yang, Q.1    Reisman, C.A.2    Chan, K.3    Ramachandran, R.4    Raza, A.5    Hood, D.C.6
  • 34
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 35
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science 313(5786), 504–507 (2006).
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 36
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18(7), 1527–1554 (2006).
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 39
    • 85011656447 scopus 로고    scopus 로고
    • Segmenting retinal blood vessels with deep neural networks
    • P. Liskowski and K. Krawiec, “Segmenting retinal blood vessels with deep neural networks,” IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.11 , pp. 2369-2380
    • Liskowski, P.1    Krawiec, K.2
  • 40
    • 84959325071 scopus 로고    scopus 로고
    • A cross-modality learning approach for vessel segmentation in retinal images
    • Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, and T. Wang, “A cross-modality learning approach for vessel segmentation in retinal images,” IEEE Trans. Med. Imaging 35(1), 109–118 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.1 , pp. 109-118
    • Li, Q.1    Feng, B.2    Xie, L.3    Liang, P.4    Zhang, H.5    Wang, T.6
  • 41
    • 84968665432 scopus 로고    scopus 로고
    • Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images
    • M. J. van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen, and C. I. Sánchez, “Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images,” IEEE Trans. Med. Imaging 35(5), 1273–1284 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1273-1284
    • Van Grinsven, M.J.1    Van Ginneken, B.2    Hoyng, C.B.3    Theelen, T.4    Sánchez, C.I.5
  • 42
    • 84968610616 scopus 로고    scopus 로고
    • Brain tumor segmentation using convolutional neural networks in MRI images
    • S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain tumor segmentation using convolutional neural networks in MRI images,” IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1240-1251
    • Pereira, S.1    Pinto, A.2    Alves, V.3    Silva, C.A.4
  • 43
    • 84968542337 scopus 로고    scopus 로고
    • Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
    • Qi Dou, Hao Chen, Lequan Yu, Lei Zhao, Jing Qin, V. C. Defeng Wang, Mok, Lin Shi, and Pheng-Ann Heng, “Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks,” IEEE Trans. Med. Imaging 35(5), 1182–1195 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1182-1195
    • Qi, D.1    Chen, H.2    Lequan, Y.3    Zhao, L.4    Qin, J.5    Defeng Wang, V.C.6    Mok, L.S.7    Heng, P.-A.8
  • 44
    • 85011554665 scopus 로고    scopus 로고
    • Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration
    • S. P. K. Karri, D. Chakraborty, and J. Chatterjee, “Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration,” Biomed. Opt. Express 8(2), 579–592 (2017).
    • (2017) Biomed. Opt. Express , vol.8 , Issue.2 , pp. 579-592
    • Karri, S.P.K.1    Chakraborty, D.2    Chatterjee, J.3
  • 45
    • 84944316034 scopus 로고    scopus 로고
    • Deep learning of tissue specific speckle representations in optical coherence tomography and deeper exploration for in situ histology
    • IEEE
    • D. Sheet, S. P. K. Karri, and A. Katouzian, “Deep learning of tissue specific speckle representations in optical coherence tomography and deeper exploration for in situ histology,” in IEEE International Symposium on Biomedical Imaging, (IEEE, 2015),pp.777–780.
    • (2015) IEEE International Symposium on Biomedical Imaging , pp. 777-780
    • Sheet, D.1    Karri, S.P.K.2    Katouzian, A.3
  • 46
    • 79953032163 scopus 로고    scopus 로고
    • Automated segmentation of macular layers in OCT images and quantitative evaluation of performances
    • I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,” Pattern Recognit. 44(8), 1590–1603 (2011).
    • (2011) Pattern Recognit , vol.44 , Issue.8 , pp. 1590-1603
    • Ghorbel, I.1    Rossant, F.2    Bloch, I.3    Tick, S.4    Paques, M.5
  • 51
    • 85011310997 scopus 로고    scopus 로고
    • Choroid segmentation from optical coherence tomography with graph-edge weights learned from deep convolutional neural networks
    • X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from optical coherence tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing 237, 332–341 (2017).
    • (2017) Neurocomputing , vol.237 , pp. 332-341
    • Sui, X.1    Zheng, Y.2    Wei, B.3    Bi, H.4    Wu, J.5    Pan, X.6    Yin, Y.7    Zhang, S.8
  • 52
    • 84857959029 scopus 로고    scopus 로고
    • Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images
    • S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci. 53(1), 53–61 (2012).
    • (2012) Invest. Ophthalmol. Vis. Sci , vol.53 , Issue.1 , pp. 53-61
    • Chiu, S.J.1    Izatt, J.A.2    O’Connell, R.V.3    Winter, K.P.4    Toth, C.A.5    Farsiu, S.6
  • 53
    • 84891629452 scopus 로고    scopus 로고
    • Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography
    • Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group
    • S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth; Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology 121(1), 162–172 (2014).
    • (2014) Ophthalmology , vol.121 , Issue.1 , pp. 162-172
    • Farsiu, S.1    Chiu, S.J.2    O’Connell, R.V.3    Folgar, F.A.4    Yuan, E.5    Izatt, J.A.6    Toth, C.A.7
  • 54
    • 34147120474 scopus 로고
    • A note on two problems in connexion with graphs
    • E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
    • (1959) Numer. Math , vol.1 , Issue.1 , pp. 269-271
    • Dijkstra, E.W.1
  • 56
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, “Deep learning in neural networks: an overview,” Neural Netw. 61(10), 85–117 (2015).
    • (2015) Neural Netw , vol.61 , Issue.10 , pp. 85-117
    • Schmidhuber, J.1
  • 57
    • 84969916782 scopus 로고    scopus 로고
    • Improving computer-aided detection using convolutional neural networks and random view aggregation
    • H. R. Roth, L. Lu, J. Liu, J. Yao, A. Seff, K. Cherry, L. Kim, and R. M. Summers, “Improving computer-aided detection using convolutional neural networks and random view aggregation,” IEEE Trans. Med. Imaging 35(5), 1170–1181 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1170-1181
    • Roth, H.R.1    Lu, L.2    Liu, J.3    Yao, J.4    Seff, A.5    Cherry, K.6    Kim, L.7    Summers, R.M.8
  • 58
    • 84992413299 scopus 로고    scopus 로고
    • Longitudinal associations between microstructural changes and microperimetry in the early stages of age-related macular degeneration longitudinal structure and function associations in AMD
    • Z. Wu, D. Cunefare, E. Chiu, C. D. Luu, L. N. Ayton, C. A. Toth, S. Farsiu, and R. H. Guymer, “Longitudinal associations between microstructural changes and microperimetry in the early stages of age-related macular degeneration longitudinal structure and function associations in AMD,” Invest. Ophthalmol. Vis. Sci. 57(8), 3714–3722 (2016).
    • (2016) Invest. Ophthalmol. Vis. Sci , vol.57 , Issue.8 , pp. 3714-3722
    • Wu, Z.1    Cunefare, D.2    Chiu, E.3    Luu, C.D.4    Ayton, L.N.5    Toth, C.A.6    Farsiu, S.7    Guymer, R.H.8
  • 62
    • 84964799649 scopus 로고    scopus 로고
    • Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
    • D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7(5), 2036–2050 (2016).
    • (2016) Biomed. Opt. Express , vol.7 , Issue.5 , pp. 2036-2050
    • Cunefare, D.1    Cooper, R.F.2    Higgins, B.3    Katz, D.F.4    Dubra, A.5    Carroll, J.6    Farsiu, S.7
  • 63
    • 79955941689 scopus 로고    scopus 로고
    • Revealing Henles Fiber Layer Using Spectral Domain Optical Coherence Tomography,”
    • B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s Fiber Layer Using Spectral Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
    • (2011) Invest. Ophthalmol. Vis. Sci , vol.52 , Issue.3 , pp. 1486-1492
    • Lujan, B.J.1    Roorda, A.2    Knighton, R.W.3    Carroll, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.