메뉴 건너뛰기




Volumn 124, Issue 7, 2017, Pages 962-969

Automated Identification of Diabetic Retinopathy Using Deep Learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; COST EFFECTIVENESS ANALYSIS; DIABETIC PATIENT; DIABETIC RETINOPATHY; DIAGNOSTIC IMAGING; DIAGNOSTIC TEST ACCURACY STUDY; HIGH RISK PATIENT; HUMAN; LEARNING ALGORITHM; OPHTHALMOLOGIST; PREDICTIVE VALUE; PRIORITY JOURNAL; RETINA EXUDATE; RETINA HEMORRHAGE; RETINA IMAGE; RETINA NEOVASCULARIZATION; SENSITIVITY AND SPECIFICITY; VISUAL IMPAIRMENT; ALGORITHM; ARTIFICIAL NEURAL NETWORK; COMPUTER ASSISTED DIAGNOSIS; MACHINE LEARNING; PROCEDURES; RECEIVER OPERATING CHARACTERISTIC; REPRODUCIBILITY; VISUAL SYSTEM EXAMINATION;

EID: 85016221341     PISSN: 01616420     EISSN: 15494713     Source Type: Journal    
DOI: 10.1016/j.ophtha.2017.02.008     Document Type: Article
Times cited : (1056)

References (34)
  • 1
    • 77951089891 scopus 로고    scopus 로고
    • IDF Diabetes Atlas 7th edition
    • Accessed October 20, 2015.
    • International Diabetes Federation (IDF). IDF Diabetes Atlas 7th edition. 2015 http://www.diabetesatlas.org/ Accessed October 20, 2016.
    • (2016)
  • 2
    • 0042932653 scopus 로고    scopus 로고
    • Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales
    • Wilkinson, C.P., Ferris, F.L., Klein, R.E., et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110 (2003), 1677–1682.
    • (2003) Ophthalmology , vol.110 , pp. 1677-1682
    • Wilkinson, C.P.1    Ferris, F.L.2    Klein, R.E.3
  • 4
    • 84960945662 scopus 로고    scopus 로고
    • Trends in health care expenditure in U.S. adults with diabetes: 2002–2011
    • Ozieh, M.N., Bishu, K.G., Dismuke, C.E., Egede, L.E., Trends in health care expenditure in U.S. adults with diabetes: 2002–2011. Diabetes Care 38 (2015), 1844–1851.
    • (2015) Diabetes Care , vol.38 , pp. 1844-1851
    • Ozieh, M.N.1    Bishu, K.G.2    Dismuke, C.E.3    Egede, L.E.4
  • 5
    • 84904568297 scopus 로고    scopus 로고
    • Grader agreement, and sensitivity and specificity of digital photography in a community optometry-based diabetic eye screening program
    • Sellahewa, L., Simpson, C., Maharajan, P., et al. Grader agreement, and sensitivity and specificity of digital photography in a community optometry-based diabetic eye screening program. Clin Ophthalmol 8 (2014), 1345–1349.
    • (2014) Clin Ophthalmol , vol.8 , pp. 1345-1349
    • Sellahewa, L.1    Simpson, C.2    Maharajan, P.3
  • 6
    • 20444481666 scopus 로고    scopus 로고
    • Screening for diabetic retinopathy in rural area using single-field, digital fundus images
    • Ruamviboonsuk, P., Wongcumchang, N., Surawongsin, P., et al. Screening for diabetic retinopathy in rural area using single-field, digital fundus images. J Med Assoc Thail 88 (2005), 176–180.
    • (2005) J Med Assoc Thail , vol.88 , pp. 176-180
    • Ruamviboonsuk, P.1    Wongcumchang, N.2    Surawongsin, P.3
  • 7
    • 84895832615 scopus 로고    scopus 로고
    • Global estimates of diabetes prevalence for 2013 and projections for 2035
    • Guariguata, L., Whiting, D.R., Hambleton, I., et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103 (2014), 137–149.
    • (2014) Diabetes Res Clin Pract , vol.103 , pp. 137-149
    • Guariguata, L.1    Whiting, D.R.2    Hambleton, I.3
  • 8
    • 84887009262 scopus 로고    scopus 로고
    • Computer-aided diagnosis of diabetic retinopathy: a review
    • Mookiah, M.R.K., Acharya, U.R., Chua, C.K., et al. Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med 43 (2013), 2136–2155.
    • (2013) Comput Biol Med , vol.43 , pp. 2136-2155
    • Mookiah, M.R.K.1    Acharya, U.R.2    Chua, C.K.3
  • 9
    • 70350090834 scopus 로고    scopus 로고
    • Algorithms for digital image processing in diabetic retinopathy
    • Winder, R.J., Morrow, P.J., McRitchie, I.N., et al. Algorithms for digital image processing in diabetic retinopathy. Comput Med Imaging Graph 33 (2009), 608–622.
    • (2009) Comput Med Imaging Graph , vol.33 , pp. 608-622
    • Winder, R.J.1    Morrow, P.J.2    McRitchie, I.N.3
  • 10
    • 84990193991 scopus 로고    scopus 로고
    • Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
    • Abràmoff, M.D., Lou, Y., Erginay, A., et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Opthalmol Vis Sci 57 (2016), 5200–5206.
    • (2016) Invest Opthalmol Vis Sci , vol.57 , pp. 5200-5206
    • Abràmoff, M.D.1    Lou, Y.2    Erginay, A.3
  • 11
    • 84928629748 scopus 로고    scopus 로고
    • Discrimination of retinal images containing bright lesions using sparse coded features and SVM
    • Sidibé, D., Sadek, I., Mériaudeau, F., Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput Biol Med 62 (2015), 175–184.
    • (2015) Comput Biol Med , vol.62 , pp. 175-184
    • Sidibé, D.1    Sadek, I.2    Mériaudeau, F.3
  • 12
    • 84948823005 scopus 로고    scopus 로고
    • Automatic discrimination of color retinal images using the bag of words approach. In: Hadjiiski LM, Tourassi GD, eds. Proc. SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis, 94141J (March 20,).; Accessed October 20, 2016.
    • Sadek I, Sidibé D, Meriaudeau F. Automatic discrimination of color retinal images using the bag of words approach. In: Hadjiiski LM, Tourassi GD, eds. Proc. SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis, 94141J (March 20, 2015). http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2075824; Accessed October 20, 2016.
    • (2015)
    • Sadek, I.1    Sidibé, D.2    Meriaudeau, F.3
  • 13
    • 84964575196 scopus 로고    scopus 로고
    • SURF descriptor and pattern recognition techniques in automatic identification of pathological retinas. 2015 Brazilian Conference on Intelligent Systems (BRACIS)
    • Veras, R., Silva, R., Araujo, F., Medeiros, F., SURF descriptor and pattern recognition techniques in automatic identification of pathological retinas. 2015 Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2015, 316–321.
    • (2015) IEEE , pp. 316-321
    • Veras, R.1    Silva, R.2    Araujo, F.3    Medeiros, F.4
  • 14
    • 77955998889 scopus 로고    scopus 로고
    • Convolutional networks and applications in vision
    • ISCAS 2010—2010 IEEE International Symposium on Circuits and Systems Nano-Bio Circuit Fabrics and Systems
    • LeCun, Y., Kavukcuoglu, K., Farabet, C., Convolutional networks and applications in vision. ISCAS 2010—2010 IEEE International Symposium on Circuits and Systems, 2010, Nano-Bio Circuit Fabrics and Systems, 253–256.
    • (2010) , pp. 253-256
    • LeCun, Y.1    Kavukcuoglu, K.2    Farabet, C.3
  • 16
    • 84994041086 scopus 로고    scopus 로고
    • Diabetic retinopathy detection
    • Accessed 1.12.2016
    • Kaggle, Inc. Diabetic retinopathy detection. 2015 https://www.kaggle.com/c/diabetic-retinopathy-detection Accessed 1.12.2016.
    • (2015)
  • 17
    • 77953489865 scopus 로고    scopus 로고
    • EyePACS: an adaptable telemedicine system for diabetic retinopathy screening
    • Cuadros, J., Bresnick, G., Affiliations, A., EyePACS: an adaptable telemedicine system for diabetic retinopathy screening. J Diabetes Sci Technol 3 (2009), 509–516.
    • (2009) J Diabetes Sci Technol , vol.3 , pp. 509-516
    • Cuadros, J.1    Bresnick, G.2    Affiliations, A.3
  • 19
    • 84911364368 scopus 로고    scopus 로고
    • Large-scale video classification with convolutional neural networks
    • Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    • Karpathy, A., Toderici, G., Shetty, S., et al. Large-scale video classification with convolutional neural networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2014, 1725–1732.
    • (2014) , pp. 1725-1732
    • Karpathy, A.1    Toderici, G.2    Shetty, S.3
  • 20
    • 85010862736 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Accessed October 20 2016.
    • He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition. ArxivOrg 7 (2015), 171–180 http://arxiv.org/pdf/1512.03385v1.pdf Accessed October 20, 2016.
    • (2015) ArxivOrg , vol.7 , pp. 171-180
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 21
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., Szegedy, C., Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 22
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines. Proc 27th International Conference on Machine Learning. 2010:807-814.
    • Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. Proc 27th International Conference on Machine Learning. 2010:807-814.
    • Nair, V.1    Hinton, G.E.2
  • 23
    • 85021431282 scopus 로고    scopus 로고
    • On the pairing of the Softmax activation and cross-entropy penalty functions and the derivation of the Softmax activation function. Proc 8th Aust Conf Neural Networks 1997:1-5.; Accessed October 20
    • Dunne R, Campbell N. On the pairing of the Softmax activation and cross-entropy penalty functions and the derivation of the Softmax activation function. Proc 8th Aust Conf Neural Networks 1997:1-5. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.6403&rep=rep1&type=pdf; Accessed October 20, 2016.
    • (2016)
    • Dunne, R.1    Campbell, N.2
  • 24
    • 84986247435 scopus 로고    scopus 로고
    • Learning deep features for discriminative localization
    • arXiv.org. 151204150 [cs] Accessed October 20 2016. http://www.arxiv.org/pdf/1512.04150.pdf
    • Zhou, B., Khosla, A., Lapedriza, A., et al. Learning deep features for discriminative localization. arXiv.org. 151204150 [cs], 2015, 2015, 2921–2929 http://arxiv.org/abs/1512.04150/n http://www.arxiv.org/pdf/1512.04150.pdf Accessed October 20, 2016.
    • (2015) , vol.2015 , pp. 2921-2929
    • Zhou, B.1    Khosla, A.2    Lapedriza, A.3
  • 25
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J.H., Greedy function approximation: a gradient boosting machine. Ann Stat 29 (2001), 1189–1232.
    • (2001) Ann Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 26
    • 84911399185 scopus 로고    scopus 로고
    • Feedback on a publicly distributed image database: the Messidor database
    • Decencière, E., Zhang, X., Cazuguel, G., et al. Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol 33 (2014), 231–234.
    • (2014) Image Anal Stereol , vol.33 , pp. 231-234
    • Decencière, E.1    Zhang, X.2    Cazuguel, G.3
  • 27
    • 84876118589 scopus 로고    scopus 로고
    • TeleOphta: machine learning and image processing methods for teleophthalmology
    • Decencière, E., Cazuguel, G., Zhang, X., et al. TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 34 (2013), 196–203.
    • (2013) IRBM , vol.34 , pp. 196-203
    • Decencière, E.1    Cazuguel, G.2    Zhang, X.3
  • 28
    • 54449099727 scopus 로고    scopus 로고
    • Optimal wavelet transform for the detection of microaneurysms in retina photographs
    • Quellec, G., Lamard, M., Josselin, P.M., et al. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Trans Med Imaging 27 (2008), 1230–1241.
    • (2008) IEEE Trans Med Imaging , vol.27 , pp. 1230-1241
    • Quellec, G.1    Lamard, M.2    Josselin, P.M.3
  • 29
    • 84896399416 scopus 로고    scopus 로고
    • An ensemble-based system for automatic screening of diabetic retinopathy
    • Antal, B., Hajdu, A., An ensemble-based system for automatic screening of diabetic retinopathy. Knowledge-Based Syst 60 (2014), 20–27.
    • (2014) Knowledge-Based Syst , vol.60 , pp. 20-27
    • Antal, B.1    Hajdu, A.2
  • 30
    • 80052371503 scopus 로고    scopus 로고
    • Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data
    • Sánchez, C.I., Niemeijer, M., Dumitrescu, A.V., et al. Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. Invest Ophthalmol Vis Sci 52 (2011), 4866–4871.
    • (2011) Invest Ophthalmol Vis Sci , vol.52 , pp. 4866-4871
    • Sánchez, C.I.1    Niemeijer, M.2    Dumitrescu, A.V.3
  • 31
    • 84963818857 scopus 로고    scopus 로고
    • Red lesion detection using dynamic shape features for diabetic retinopathy screening
    • Seoud, L., Hurtut, T., Chelbi, J., et al. Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging 35 (2016), 1116–1126.
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 1116-1126
    • Seoud, L.1    Hurtut, T.2    Chelbi, J.3
  • 33
    • 84919775831 scopus 로고    scopus 로고
    • Accelerating t-SNE using tree-based algorithms
    • van der Maaten, L., Accelerating t-SNE using tree-based algorithms. J Mach Learn Res 15 (2014), 3221–3245.
    • (2014) J Mach Learn Res , vol.15 , pp. 3221-3245
    • van der Maaten, L.1
  • 34
    • 85021425745 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Available at:
    • Gulshan, V., Peng, L., Coram, M., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 304 (2016), 649–656 Available at: http://www.ncbi.nlm.nih.gov/pubmed/27898976.
    • (2016) JAMA , vol.304 , pp. 649-656
    • Gulshan, V.1    Peng, L.2    Coram, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.