-
2
-
-
2342565172
-
The effects of adding noise during backpropagation training on a generalization performance
-
Guozhong An. The effects of adding noise during backpropagation training on a generalization performance. Neural Comput., pages 643-674, 1996.
-
(1996)
Neural Comput.
, pp. 643-674
-
-
Guozhong, An.1
-
3
-
-
85081997770
-
Towards principled methods for training generative adversarial networks
-
Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks. In ICLR, 2017.
-
(2017)
ICLR
-
-
Arjovsky, M.1
Bottou, L.2
-
5
-
-
0001740650
-
Training with noise is equivalent to tikhonov regularization
-
Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural computation, 7:108-116, 1995.
-
(1995)
Neural Computation
, vol.7
, pp. 108-116
-
-
Bishop, C.M.1
-
7
-
-
85041920050
-
-
arXiv preprint
-
Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized generative adversarial networks. arXiv preprint arXiv:1612.02136, 2016.
-
(2016)
Mode Regularized Generative Adversarial Networks
-
-
Che, T.1
Li, Y.2
Jacob, A.P.3
Bengio, Y.4
Li, W.5
-
8
-
-
84937849144
-
Generative adversarial networks
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In Advances in Neural Information Processing Systems, pages 2672-2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
9
-
-
84859477054
-
A kernel two-sample test
-
Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. Journal of Machine Learning Research, 13:723-773, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
10
-
-
85047004943
-
Improved training of wasserstein gans
-
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training of wasserstein gans. In Advances in Neural Information Processing Systems, 2017.
-
(2017)
Advances in Neural Information Processing Systems
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Dumoulin, V.4
Courville, A.5
-
11
-
-
84986274465
-
Deep residual learning for image recognition
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), page 770-778, 2016.
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
PMLR
-
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of Machine Learning Research, pages 448-456. PMLR, 2015.
-
(2015)
Proceedings of Machine Learning Research
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
16
-
-
84970016114
-
Generative moment matching networks
-
Yujia Li, Kevin Swersky, and Richard S Zemel. Generative moment matching networks. In ICML, pages 1718-1727, 2015.
-
(2015)
ICML
, pp. 1718-1727
-
-
Li, Y.1
Swersky, K.2
Zemel, R.S.3
-
17
-
-
84973917446
-
Deep learning face attributes in the wild
-
Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, pages 3730-3738, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 3730-3738
-
-
Liu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
22
-
-
0010487372
-
Integral probability metrics and their generating classes of functions
-
Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 29:429-443, 1997.
-
(1997)
Advances in Applied Probability
, vol.29
, pp. 429-443
-
-
Müller, A.1
-
24
-
-
77958588617
-
Estimating divergence functionals and the likelihood ratio by convex risk minimization
-
XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory, 56(11):5847-5861, 2010.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, Issue.11
, pp. 5847-5861
-
-
Nguyen, X.1
Wainwright, M.J.2
Jordan, M.I.3
-
25
-
-
85018914753
-
F-GAN: Training generative neural samplers using variational divergence minimization
-
Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers using variational divergence minimization. In Advances in Neural Information Processing Systems, pages 271-279, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 271-279
-
-
Nowozin, S.1
Cseke, B.2
Tomioka, R.3
-
30
-
-
85030256165
-
-
arXiv preprint
-
Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised map inference for image super-resolution. arXiv preprint arXiv:1610.04490, 2016.
-
(2016)
Amortised Map Inference for Image Super-resolution
-
-
Sønderby, C.K.1
Caballero, J.2
Theis, L.3
Shi, W.4
Huszár, F.5
-
31
-
-
77951962690
-
-
arXiv preprint
-
Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert RG Lanckriet. On integral probability metrics, phi-divergences and binary classification. arXiv preprint arXiv:0901.2698, 2009.
-
(2009)
On Integral Probability Metrics, Phi-divergences and Binary Classification
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Gretton, A.3
Schölkopf, B.4
Lanckriet, G.R.G.5
-
32
-
-
84979976120
-
-
arXiv preprint
-
Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.
-
(2015)
Lsun: Construction of a Large-scale Image Dataset Using Deep Learning with Humans in the Loop
-
-
Yu, F.1
Zhang, Y.2
Song, S.3
Seff, A.4
Xiao, J.5
|