-
1
-
-
0030032063
-
Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain
-
Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America 93, 1156–1160, 10.1073/pnas.93.3.1156 (1996)
-
(1996)
Proceedings of the National Academy of Sciences of the United States of America
, vol.93
, pp. 1156-1160
-
-
Kim, Y.G.1
Cha, J.2
Chandrasegaran, S.3
-
2
-
-
78951479577
-
Targeting DNA Double-Strand Breaks with TAL Effector Nucleases
-
Christian, M. et al. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics 186, 757–U476, 10.1534/genetics.110.120717 (2010)
-
(2010)
Genetics
, vol.186
, pp. 476-757
-
-
Christian, M.1
-
3
-
-
84865070369
-
A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity
-
Jinek, M. et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337, 816–821, 10.1126/science.1225829 (2012)
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
4
-
-
84923106217
-
Therapeutic genome editing: prospects and challenges
-
PID: 25654603
-
Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nature Medicine 21, 121–131 (2015)
-
(2015)
Nature Medicine
, vol.21
, pp. 121-131
-
-
Cox, D.B.T.1
Platt, R.J.2
Zhang, F.3
-
5
-
-
84906079358
-
Permanent Alteration of PCSK9 With In Vivo CRISPR-Cas9 Genome Editing
-
Ding, Q. R. et al. Permanent Alteration of PCSK9 With In Vivo CRISPR-Cas9 Genome Editing. Circulation Research 115, 488–+, 10.1161/circresaha.115.304351 (2014)
-
(2014)
Circulation Research
, vol.115
, pp. 488
-
-
Ding, Q.R.1
-
6
-
-
84907379292
-
The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo
-
Lin, S. R. et al. The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo. Molecular Therapy-Nucleic Acids 3 10.1038/mtna.2014.38 (2014)
-
(2014)
Molecular Therapy-Nucleic Acids
, vol.3
-
-
Lin, S.R.1
-
7
-
-
84895487305
-
Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV
-
Tebas, P. et al. Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV. New England Journal of Medicine 370, 901–910, 10.1056/NEJMoa1300662 (2014)
-
(2014)
New England Journal of Medicine
, vol.370
, pp. 901-910
-
-
Tebas, P.1
-
8
-
-
84960382041
-
In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa
-
Bakondi, B. et al. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. Molecular Therapy 24, 556–563, 10.1038/mt.2015.220 (2016)
-
(2016)
Molecular Therapy
, vol.24
, pp. 556-563
-
-
Bakondi, B.1
-
9
-
-
84963940775
-
In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
-
Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407, 10.1126/science.aad5143 (2016)
-
(2016)
Science
, vol.351
, pp. 403-407
-
-
Nelson, C.E.1
-
10
-
-
84890033064
-
Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients
-
Schwank, G. et al. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell 13, 653–658, 10.1016/j.stem.2013.11.002 (2013)
-
(2013)
Cell Stem Cell
, vol.13
, pp. 653-658
-
-
Schwank, G.1
-
11
-
-
84890050551
-
Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9
-
Wu, Y. X. et al. Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9. Cell Stem Cell 13, 659–662, 10.1016/j.stem.2013.10.016 (2013)
-
(2013)
Cell Stem Cell
, vol.13
, pp. 659-662
-
-
Wu, Y.X.1
-
12
-
-
84907200149
-
Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
-
Long, C. Z. et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188, 10.1126/science.1254445 (2014)
-
(2014)
Science
, vol.345
, pp. 1184-1188
-
-
Long, C.Z.1
-
13
-
-
84963516618
-
Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease
-
De Ravin, S. S. et al. Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease. Nature Biotechnology 34, 424–+, 10.1038/nbt.3513 (2016)
-
(2016)
Nature Biotechnology
, vol.34
, pp. 424
-
-
De Ravin, S.S.1
-
14
-
-
0034641963
-
Defying death after DNA damage
-
PID: 11048728
-
Rich, T., Allen, R. L. & Wyllie, A. H. Defying death after DNA damage. Nature 407, 777–783 (2000)
-
(2000)
Nature
, vol.407
, pp. 777-783
-
-
Rich, T.1
Allen, R.L.2
Wyllie, A.H.3
-
15
-
-
80051708642
-
How does DNA break during chromosomal translocations?
-
Nambiar, M. & Raghavan, S. C. How does DNA break during chromosomal translocations? Nucleic Acids Research 39, 5813–5825, 10.1093/nar/gkr223 (2011)
-
(2011)
Nucleic Acids Research
, vol.39
, pp. 5813-5825
-
-
Nambiar, M.1
Raghavan, S.C.2
-
16
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, 1248–+, 10.1126/science.aaf8729 (2016)
-
(2016)
Science
, vol.353
, pp. 1248
-
-
Nishida, K.1
-
17
-
-
0033603340
-
Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells
-
Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. Journal of Biological Chemistry 274, 18470–18476, 10.1074/jbc.274.26.18470 (1999)
-
(1999)
Journal of Biological Chemistry
, vol.274
, pp. 18470-18476
-
-
Muramatsu, M.1
-
18
-
-
84979523619
-
Targeted mutagenesis using CRISPR/Cas system in medaka
-
Ansai, S. & Kinoshita, M. Targeted mutagenesis using CRISPR/Cas system in medaka. Biology Open 3, 362–371, 10.1242/bio.20148177 (2014)
-
(2014)
Biology Open
, vol.3
, pp. 362-371
-
-
Ansai, S.1
Kinoshita, M.2
-
19
-
-
84929494345
-
CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool
-
Stemmer, M., Thumberger, T., Keyer, M. d. S., Wittbrodt, J. & Mateo, J. L. CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. Plos One 10 https://doi.org/10.1371/journal.pone.0124633 (2015)
-
(2015)
Plos One
, vol.10
-
-
Stemmer, M.1
Thumberger, T.2
Keyer, M.D.S.3
Wittbrodt, J.4
Mateo, J.L.5
-
20
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–+, 10.1038/nature17946 (2016)
-
(2016)
Nature
, vol.533
, pp. 420
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
21
-
-
0001957581
-
Dino and mercedes, two genes regulating dorsal development in the zebrafish embryo
-
PID: 9007232
-
Hammerschmidt, M. et al. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123, 95–102 (1996)
-
(1996)
Development
, vol.123
, pp. 95-102
-
-
Hammerschmidt, M.1
-
22
-
-
0031040286
-
The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail
-
PID: 9053309
-
Schier, A. F., Neuhauss, S. C. F., Helde, K. A., Talbot, W. S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327–342 (1997)
-
(1997)
Development
, vol.124
, pp. 327-342
-
-
Schier, A.F.1
Neuhauss, S.C.F.2
Helde, K.A.3
Talbot, W.S.4
Driever, W.5
-
23
-
-
84890805562
-
Biallelic Genome Modification in F-0 Xenopus tropicalis Embryos Using the CRISPR/Cas System
-
Blitz, I. L., Biesinger, J., Xie, X. H. & Cho, K. W. Y. Biallelic Genome Modification in F-0 Xenopus tropicalis Embryos Using the CRISPR/Cas System. Genesis 51, 827–834, 10.1002/dvg.22719 (2013)
-
(2013)
Genesis
, vol.51
, pp. 827-834
-
-
Blitz, I.L.1
Biesinger, J.2
Xie, X.H.3
Cho, K.W.Y.4
-
24
-
-
84890787845
-
Simple and Efficient CRISPR/Cas9-Mediated Targeted Mutagenesis in Xenopus tropicalis
-
Nakayama, T. et al. Simple and Efficient CRISPR/Cas9-Mediated Targeted Mutagenesis in Xenopus tropicalis. Genesis 51, 835–843, 10.1002/dvg.22720 (2013)
-
(2013)
Genesis
, vol.51
, pp. 835-843
-
-
Nakayama, T.1
-
25
-
-
84877103949
-
Generation of gene-modified mice via Cas9/RNA-mediated gene targeting
-
Shen, B. et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research 23, 720–723, 10.1038/cr.2013.46 (2013)
-
(2013)
Cell Research
, vol.23
, pp. 720-723
-
-
Shen, B.1
-
26
-
-
84877707375
-
One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering
-
Wang, H. Y. et al. One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell 153, 910–918, 10.1016/j.cell.2013.04.025 (2013)
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.Y.1
-
27
-
-
84881475586
-
Heritable genome editing in C. elegans via a CRISPR-Cas9 system
-
Friedland, A. E. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods 10, 741–+, 10.1038/nmeth.2532 (2013)
-
(2013)
Nature Methods
, vol.10
, pp. 741
-
-
Friedland, A.E.1
-
28
-
-
84880088705
-
Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease
-
Gratz, S. J. et al. Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease. Genetics 194, 1029–+, 10.1534/genetics.113.152710 (2013)
-
(2013)
Genetics
, vol.194
, pp. 1029
-
-
Gratz, S.J.1
-
29
-
-
85025611746
-
Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system
-
Zhang, Y. H. et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nature Communications 8 10.1038/s41467-017-00175-6 (2017)
-
(2017)
Nature Communications
, vol.8
-
-
Zhang, Y.H.1
-
30
-
-
0024083714
-
Inosine induced mutations
-
Nordmann, P. L., Makris, J. C. & Reznikoff, W. S. Inosine induced mutations. Molecular & General Genetics 214, 62–67, 10.1007/bf00340180 (1988)
-
(1988)
Molecular & General Genetics
, vol.214
, pp. 62-67
-
-
Nordmann, P.L.1
Makris, J.C.2
Reznikoff, W.S.3
-
31
-
-
84938399774
-
A Novel Method for Rearing Zebrafish by Using Freshwater Rotifers (Brachionus calyciflorus)
-
Aoyama, Y. et al. A Novel Method for Rearing Zebrafish by Using Freshwater Rotifers (Brachionus calyciflorus). Zebrafish 12, 288–295, 10.1089/zeb.2014.1032 (2015)
-
(2015)
Zebrafish
, vol.12
, pp. 288-295
-
-
Aoyama, Y.1
-
32
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31, 227–229, 10.1038/nbt.2501 (2013)
-
(2013)
Nature Biotechnology
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
-
33
-
-
0024605518
-
Analysis of any point mutation in DNA - The amplification refractory mutation system (ARMS)
-
Newton, C. R. et al. Analysis of any point mutation in DNA - The amplification refractory mutation system (ARMS). Nucleic Acids Research 17, 2503–2516, 10.1093/nar/17.7.2503 (1989)
-
(1989)
Nucleic Acids Research
, vol.17
, pp. 2503-2516
-
-
Newton, C.R.1
-
34
-
-
33748800240
-
FGF signaling is required for beta-catenin-mediated induction of the zebrafish organizer
-
Maegawa, S., Varga, M. & Weinberg, E. S. FGF signaling is required for beta-catenin-mediated induction of the zebrafish organizer. Development 133, 3265–3276, 10.1242/dev.02483 (2006)
-
(2006)
Development
, vol.133
, pp. 3265-3276
-
-
Maegawa, S.1
Varga, M.2
Weinberg, E.S.3
-
35
-
-
85014162262
-
Chordin and dickkopf-1b are essential for the formation of head structures through activation of the FGF signaling pathway in zebrafish
-
Tanaka, S., Hosokawa, H., Weinberg, E. S. & Maegawa, S. Chordin and dickkopf-1b are essential for the formation of head structures through activation of the FGF signaling pathway in zebrafish. Developmental biology 424, 189–197, 10.1016/j.ydbio.2017.02.018 (2017)
-
(2017)
Developmental biology
, vol.424
, pp. 189-197
-
-
Tanaka, S.1
Hosokawa, H.2
Weinberg, E.S.3
Maegawa, S.4
-
36
-
-
54549088884
-
Essential Role for fibrillin-2 in Zebrafish Notochord and Vascular Morphogenesis
-
Gansner, J. M., Madsen, E. C., Mecham, R. P. & Gitlin, J. D. Essential Role for fibrillin-2 in Zebrafish Notochord and Vascular Morphogenesis. Developmental Dynamics 237, 2844–2861, 10.1002/dvdy.21705 (2008)
-
(2008)
Developmental Dynamics
, vol.237
, pp. 2844-2861
-
-
Gansner, J.M.1
Madsen, E.C.2
Mecham, R.P.3
Gitlin, J.D.4
|