메뉴 건너뛰기




Volumn 7, Issue 6, 2018, Pages

zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs

Author keywords

Digital gene expression; Pipeline; Single cell RNA sequencing; Unique molecular identifiers

Indexed keywords

ANIMAL TISSUE; CONTROLLED STUDY; EXON; GENE CLUSTER; GENE EXPRESSION PROFILING; GENE LIBRARY; GENE MAPPING; INFORMATION PROCESSING; INTRON; LIMIT OF QUANTITATION; MEASUREMENT ACCURACY; MOUSE; NONHUMAN; NOTE; PRIORITY JOURNAL; RNA SEQUENCE; SINGLE CELL RNA SEQUENCING; GENE EXPRESSION REGULATION; GENETICS; HEK293 CELL LINE; HUMAN; PROCEDURES; SEQUENCE ANALYSIS; SOFTWARE;

EID: 85049379360     PISSN: None     EISSN: 2047217X     Source Type: Journal    
DOI: 10.1093/gigascience/giy059     Document Type: Note
Times cited : (222)

References (48)
  • 1
    • 84894630323 scopus 로고    scopus 로고
    • Entering the era of single-cell transcriptomics in biology and medicine
    • Sandberg R. Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods 2014;11(1):22-4
    • (2014) Nat Methods , vol.11 , Issue.1 , pp. 22-24
    • Sandberg, R.1
  • 2
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017;8:14049
    • (2017) Nat Commun , vol.8 , pp. 14049
    • Zheng, G.X.Y.1    Terry, J.M.2    Belgrader, P.3
  • 3
    • 85044434871 scopus 로고    scopus 로고
    • Single-cell profiling of the developing mouse brain and spinal cord with splitpool barcoding
    • Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with splitpool barcoding. Science 2018;360(6385):176-82
    • (2018) Science , vol.360 , Issue.6385 , pp. 176-182
    • Rosenberg, A.B.1    Roco, C.M.2    Muscat, R.A.3
  • 4
    • 84994860357 scopus 로고    scopus 로고
    • Revealing the vectors of cellular identity with single-cell genomics
    • Wagner A, Regev A, Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol 2016;34(11):1145-60
    • (2016) Nat Biotechnol , vol.34 , Issue.11 , pp. 1145-1160
    • Wagner, A.1    Regev, A.2    Yosef, N.3
  • 6
    • 84971330634 scopus 로고    scopus 로고
    • The impact of amplification on differential expression analyses by RNA-seq
    • Parekh S, Ziegenhain C, Vieth B, et al. The impact of amplification on differential expression analyses by RNA-seq. Sci Rep 2016;6:25533
    • (2016) Sci Rep , vol.6 , pp. 25533
    • Parekh, S.1    Ziegenhain, C.2    Vieth, B.3
  • 7
    • 84856484968 scopus 로고    scopus 로고
    • Counting absolute numbers of molecules using unique molecular identifiers
    • Kivioja T, Vähärautio A, Karlsson K, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 2012;9(1):72-4
    • (2012) Nat Methods , vol.9 , Issue.1 , pp. 72-74
    • Kivioja, T.1    Vähärautio, A.2    Karlsson, K.3
  • 8
    • 85013200683 scopus 로고    scopus 로고
    • Comparative analysis of single-cell RNA sequencing methods
    • Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell 2017;65(4):631-43.e4
    • (2017) Mol Cell , vol.65 , Issue.4
    • Ziegenhain, C.1    Vieth, B.2    Parekh, S.3
  • 9
    • 85043451987 scopus 로고    scopus 로고
    • powsimR: power analysis for bulk and single cell RNA-seq experiments
    • Vieth B, Ziegenhain C, Parekh S, et al. powsimR: power analysis for bulk and single cell RNA-seq experiments. Bioinformatics 2017;33(21):3486-3488
    • (2017) Bioinformatics , vol.33 , Issue.21 , pp. 3486-3488
    • Vieth, B.1    Ziegenhain, C.2    Parekh, S.3
  • 11
    • 84976276942 scopus 로고    scopus 로고
    • Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain
    • Lake BB, Ai R, Kaeser GE, et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 2016;352(6293):1586-90
    • (2016) Science , vol.352 , Issue.6293 , pp. 1586-1590
    • Lake, B.B.1    Ai, R.2    Kaeser, G.E.3
  • 12
    • 85031046570 scopus 로고    scopus 로고
    • Massively parallel single-nucleus RNA-seq with DroNc-seq
    • Habib N, Avraham-Davidi I, Basu A, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods 2017;14(10):955-8
    • (2017) Nat Methods , vol.14 , Issue.10 , pp. 955-958
    • Habib, N.1    Avraham-Davidi, I.2    Basu, A.3
  • 13
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genomewide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, et al. Highly parallel genomewide expression profiling of individual cells using nanoliter droplets. Cell 2015;161(5):1202-14
    • (2015) Cell , vol.161 , Issue.5 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3
  • 14
    • 85014524493 scopus 로고    scopus 로고
    • Power analysis of single-cell RNA-sequencing experiments
    • Svensson V, Natarajan KN, Ly LH, et al. Power analysis of single-cell RNA-sequencing experiments. Nat Methods 2017;14(4):381-7
    • (2017) Nat Methods , vol.14 , Issue.4 , pp. 381-387
    • Svensson, V.1    Natarajan, K.N.2    Ly, L.H.3
  • 15
    • 84964452502 scopus 로고    scopus 로고
    • CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq
    • Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol 2016;17(1):77
    • (2016) Genome Biol , vol.17 , Issue.1 , pp. 77
    • Hashimshony, T.1    Senderovich, N.2    Avital, G.3
  • 16
    • 85050874539 scopus 로고    scopus 로고
    • Accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments
    • Petukhov V, Guo J, Baryawno N, et al. Accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments. bioRxiv 2017;p. 171496
    • (2017) bioRxiv , pp. 171496
    • Petukhov, V.1    Guo, J.2    Baryawno, N.3
  • 17
    • 84969812139 scopus 로고    scopus 로고
    • Characterization of directed differentiation by high-throughput singlecell RNA-seq
    • Soumillon M, Cacchiarelli D, Semrau S, et al. Characterization of directed differentiation by high-throughput singlecell RNA-seq. bioRxiv 2014
    • (2014) bioRxiv
    • Soumillon, M.1    Cacchiarelli, D.2    Semrau, S.3
  • 18
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 2014;343(6172):776-9
    • (2014) Science , vol.343 , Issue.6172 , pp. 776-779
    • Jaitin, D.A.1    Kenigsberg, E.2    Keren-Shaul, H.3
  • 19
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161(5):1187-1201
    • (2015) Cell , vol.161 , Issue.5 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3
  • 20
    • 85010710363 scopus 로고    scopus 로고
    • Single-cell barcoding and sequencing using droplet microfluidics
    • Zilionis R, Nainys J, Veres A, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 2017;12(1):44-73
    • (2017) Nat Protoc , vol.12 , Issue.1 , pp. 44-73
    • Zilionis, R.1    Nainys, J.2    Veres, A.3
  • 21
    • 85035343759 scopus 로고    scopus 로고
    • STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array
    • Hochgerner H, L önnerberg P, Hodge R, et al. STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array. Sci Rep 2017;7(1):16327
    • (2017) Sci Rep , vol.7 , Issue.1 , pp. 16327
    • Hochgerner, H.1    Lönnerberg, P.2    Hodge, R.3
  • 22
    • 84871809302 scopus 로고    scopus 로고
    • STAR: ultrafast universal RNA-seq aligner
    • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15-21
    • (2013) Bioinformatics , vol.29 , Issue.1 , pp. 15-21
    • Dobin, A.1    Davis, C.A.2    Schlesinger, F.3
  • 23
    • 84897397058 scopus 로고    scopus 로고
    • featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
    • Liao Y, Smyth GK, ShiW. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30(7):923-30
    • (2014) Bioinformatics , vol.30 , Issue.7 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 25
    • 85016502865 scopus 로고    scopus 로고
    • UMI-tools: modelling sequencing errors in unique molecular identifiers to improve quantification accuracy
    • Smith TS, Heger A, Sudbery I. UMI-tools: modelling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 2017
    • (2017) Genome Res
    • Smith, T.S.1    Heger, A.2    Sudbery, I.3
  • 26
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 2002;97(458):611-31
    • (2002) J Am Stat Assoc , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 27
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced Model-Based Clustering, Density Estimation and Discriminant Analysis Software: MCLUST
    • Fraley C, Raftery AE Enhanced Model-Based Clustering, Density Estimation and Discriminant Analysis Software: MCLUST., J. Classification, 2003, 20, 263-286
    • (2003) J. Classification , Issue.20 , pp. 263-286
    • Fraley, C.1    Raftery, A.E.2
  • 28
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing singlecell RNA sequencing data: challenges and opportunities
    • Vallejos CA, Risso D, Scialdone A, et al. Normalizing singlecell RNA sequencing data: challenges and opportunities. Nat Methods 2017;14(6):565-71
    • (2017) Nat Methods , vol.14 , Issue.6 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3
  • 29
    • 85027179834 scopus 로고    scopus 로고
    • Selecting between-sample RNA-seq normalization methods from the perspective of their assumptions
    • Evans C, Hardin J, Stoebel DM. Selecting between-sample RNA-seq normalization methods from the perspective of their assumptions. Brief Bioinform 2017
    • (2017) Brief Bioinform
    • Evans, C.1    Hardin, J.2    Stoebel, D.M.3
  • 30
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of singlecell sequencing experiments
    • Grün D, van Oudenaarden A. Design and analysis of singlecell sequencing experiments. Cell 2015;163(4):799-810
    • (2015) Cell , vol.163 , Issue.4 , pp. 799-810
    • Grün, D.1    van Oudenaarden, A.2
  • 31
    • 84893445709 scopus 로고    scopus 로고
    • Extensive oscillatory gene expression during C. elegans larval development
    • Hendriks GJ, Gaidatzis D, Aeschimann F, et al. Extensive oscillatory gene expression during C. elegans larval development. Mol Cell 2014;53(3):380-92
    • (2014) Mol Cell , vol.53 , Issue.3 , pp. 380-392
    • Hendriks, G.J.1    Gaidatzis, D.2    Aeschimann, F.3
  • 32
    • 84946197772 scopus 로고    scopus 로고
    • Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation
    • Gaidatzis D, Burger L, Florescu M, et al. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotechnol 2015;33(7):722-9
    • (2015) Nat Biotechnol , vol.33 , Issue.7 , pp. 722-729
    • Gaidatzis, D.1    Burger, L.2    Florescu, M.3
  • 34
    • 85025441550 scopus 로고    scopus 로고
    • A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA
    • Lake BB, Codeluppi S, Yung YC, et al. A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. Sci Rep 2017;7(1):6031
    • (2017) Sci Rep , vol.7 , Issue.1 , pp. 6031
    • Lake, B.B.1    Codeluppi, S.2    Yung, Y.C.3
  • 35
    • 84929151009 scopus 로고    scopus 로고
    • Spatial reconstruction of single-cell gene expression data
    • Satija R, Farrell JA, Gennert D, et al. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 2015;33(5):495-502
    • (2015) Nat Biotechnol , vol.33 , Issue.5 , pp. 495-502
    • Satija, R.1    Farrell, J.A.2    Gennert, D.3
  • 36
    • 85041108250 scopus 로고    scopus 로고
    • Integrated analysis of single cell transcriptomic data across conditions, technologies, and species
    • Butler A, Satija R. Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. bioRxiv 2017;p. 164889
    • (2017) bioRxiv , pp. 164889
    • Butler, A.1    Satija, R.2
  • 37
    • 84961327715 scopus 로고    scopus 로고
    • Adultmouse cortical cell taxonomy revealed by single cell transcriptomics
    • Tasic B, Menon V, Nguyen TN, et al. Adultmouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 2016;19(2):335-46
    • (2016) Nat Neurosci , vol.19 , Issue.2 , pp. 335-346
    • Tasic, B.1    Menon, V.2    Nguyen, T.N.3
  • 38
    • 85053825960 scopus 로고    scopus 로고
    • Single-cell transcriptomic characterization of 20 organs and tissues from individual mice creates a Tabula Muris
    • The TabulaMuris Consortium, Quake SR, Wyss-Coray T, et al. Single-cell transcriptomic characterization of 20 organs and tissues from individual mice creates a Tabula Muris. bioRxiv 2018;p. 237446
    • (2018) bioRxiv , pp. 237446
    • Quake, S.R.1    Wyss-Coray, T.2
  • 39
    • 85042366842 scopus 로고    scopus 로고
    • Mapping the mouse cell atlas by microwell-seq
    • Han X, Wang R, Zhou Y, et al. Mapping the mouse cell atlas by microwell-seq. Cell 2018;172(5):1091-1107.e17
    • (2018) Cell , vol.172 , Issue.5
    • Han, X.1    Wang, R.2    Zhou, Y.3
  • 40
    • 85050886044 scopus 로고    scopus 로고
    • mcSCRB-seq: sensitive and powerful single-cell RNA sequencing
    • Bagnoli JW, Ziegenhain C, Janjic A, et al. mcSCRB-seq: sensitive and powerful single-cell RNA sequencing. bioRxiv 2017;p. 188367
    • (2017) bioRxiv , pp. 188367
    • Bagnoli, J.W.1    Ziegenhain, C.2    Janjic, A.3
  • 41
    • 85050861539 scopus 로고    scopus 로고
    • Broad Institute Single Cell Portal. https://portals.broadinstitute.org/single cell/study/dronc-seq-single-nucleus-rna-s eq-on-mouse-archived-brain
    • Broad Institute Single Cell Portal
  • 42
    • 84896735766 scopus 로고    scopus 로고
    • voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014;15(2):R29
    • (2014) Genome Biol , vol.15 , Issue.2
    • Law, C.W.1    Chen, Y.2    Shi, W.3
  • 43
    • 85084956732 scopus 로고    scopus 로고
    • A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
    • Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res 2016;5
    • (2016) F1000Res , pp. 5
    • Lun, A.T.L.1    McCarthy, D.J.2    Marioni, J.C.3
  • 44
    • 85044944299 scopus 로고    scopus 로고
    • Bias, robustness and scalability in single-cell differential expression analysis
    • Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods 2018;15(4):255-61
    • (2018) Nat Methods , vol.15 , Issue.4 , pp. 255-261
    • Soneson, C.1    Robinson, M.D.2
  • 45
    • 85050890811 scopus 로고    scopus 로고
    • Supporting data for 'zUMIs-A fast and flexible pipeline to process RNA sequencing datawith UMIs.'
    • Parekh S, Ziegenhain C, Vieth B, et al. Supporting data for 'zUMIs-A fast and flexible pipeline to process RNA sequencing datawith UMIs.' GigaScience Database 2018;http://dx.doi.org/10.5524/100447
    • (2018) GigaScience Database
    • Parekh, S.1    Ziegenhain, C.2    Vieth, B.3
  • 46
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods 2014;11(6):637-40
    • (2014) Nat Methods , vol.11 , Issue.6 , pp. 637-640
    • Grün, D.1    Kester, L.2    van Oudenaarden, A.3
  • 47
    • 85053178907 scopus 로고    scopus 로고
    • scPipe: a flexible data preprocessing pipeline for single-cell RNA-sequencing data
    • Tian L, Su S, Amann-Zalcenstein D, et al. scPipe: a flexible data preprocessing pipeline for single-cell RNA-sequencing data. bioRxiv 2017;p. 175927
    • (2017) bioRxiv , pp. 175927
    • Tian, L.1    Su, S.2    Amann-Zalcenstein, D.3
  • 48
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 2014;11(2):163-6
    • (2014) Nat Methods , vol.11 , Issue.2 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.