메뉴 건너뛰기




Volumn 5, Issue , 2016, Pages

A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor

Author keywords

Bioconductor; Bioinformatics; RNA seq; Single cell; Workflow

Indexed keywords


EID: 85084956732     PISSN: 20461402     EISSN: 1759796X     Source Type: Journal    
DOI: 10.12688/f1000research.9501.2     Document Type: Article
Times cited : (585)

References (50)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • 20979621, 3218662
    • Anders S Huber W: Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. 20979621 10.1186/gb-2010-11-10-r106 3218662
    • (2010) Genome Biol , vol.11 , Issue.10 , pp. R106
    • Anders, S.1    Huber, W.2
  • 2
    • 84966667709 scopus 로고    scopus 로고
    • destiny: diffusion maps for large-scale single-cell data in R
    • 26668002
    • Angerer P Haghverdi L Büttner M: destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics. 2016;32(8):1241-1243. 26668002 10.1093/bioinformatics/btv715
    • (2016) Bioinformatics , vol.32 , Issue.8 , pp. 1241-1243
    • Angerer, P.1    Haghverdi, L.2    Büttner, M.3
  • 3
    • 84880803198 scopus 로고    scopus 로고
    • Control of cell cycle transcription during G1 and S phases
    • 23877564, 4569015
    • Bertoli C Skotheim JM de Bruin RA: Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14(8):518-528. 23877564 10.1038/nrm3629 4569015
    • (2013) Nat Rev Mol Cell Biol , vol.14 , Issue.8 , pp. 518-528
    • Bertoli, C.1    Skotheim, J.M.2    de Bruin, R.A.3
  • 4
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • 20460310, 2906865
    • Bourgon R Gentleman R Huber W: Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010;107(21):9546-9551. 20460310 10.1073/pnas.0914005107 2906865
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.21 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 5
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic RNA-seq quantification
    • 27043002
    • Bray NL Pimentel H Melsted P: Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525-527. 27043002 10.1038/nbt.3519
    • (2016) Nat Biotechnol , vol.34 , Issue.5 , pp. 525-527
    • Bray, N.L.1    Pimentel, H.2    Melsted, P.3
  • 6
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • 24056876
    • Brennecke P Anders S Kim JK: Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013;10(11):1093-1095. 24056876 10.1038/nmeth.2645
    • (2013) Nat Methods , vol.10 , Issue.11 , pp. 1093-1095
    • Brennecke, P.1    Anders, S.2    Kim, J.K.3
  • 7
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • 25599176
    • Buettner F Natarajan KN Casale FP: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33(2):155-160. 25599176 10.1038/nbt.3102
    • (2015) Nat Biotechnol , vol.33 , Issue.2 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3
  • 8
    • 85011000155 scopus 로고    scopus 로고
    • From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; referees: 5 approved]
    • 27508061, 4934518
    • Chen Y Lun AT Smyth GK: From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; referees: 5 approved]. F1000Res. 2016;5: 1438. 27508061 10.12688/f1000research.8987.2 4934518
    • (2016) F1000Res , vol.5
    • Chen, Y.1    Lun, A.T.2    Smyth, G.K.3
  • 9
    • 33644984490 scopus 로고    scopus 로고
    • A new description of cellular quiescence
    • 16509772, 1393757
    • Coller HA Sang L Roberts JM: A new description of cellular quiescence. PLoS Biol. 2006;4(3):e83. 16509772 10.1371/journal.pbio.0040083 1393757
    • (2006) PLoS Biol , vol.4 , Issue.3
    • Coller, H.A.1    Sang, L.2    Roberts, J.M.3
  • 10
    • 42349088542 scopus 로고    scopus 로고
    • Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor
    • 17957245, 2020443
    • Conboy CM Spyrou C Thorne NP: Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor. PLoS One. 2007;2(10):e1061. 17957245 10.1371/journal.pone.0001061 2020443
    • (2007) PLoS One , vol.2 , Issue.10
    • Conboy, C.M.1    Spyrou, C.2    Thorne, N.P.3
  • 11
    • 84959189722 scopus 로고    scopus 로고
    • Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
    • 26780092, 4772672
    • Fan J Salathia N Liu R: Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods. 2016;13(3):241-244. 26780092 10.1038/nmeth.3734 4772672
    • (2016) Nat Methods , vol.13 , Issue.3 , pp. 241-244
    • Fan, J.1    Salathia, N.2    Liu, R.3
  • 12
    • 84961169621 scopus 로고    scopus 로고
    • On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data
    • Hicks SC Teng M Irizarry RA: On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv. 2015. 10.1101/025528
    • (2015) bioRxiv
    • Hicks, S.C.1    Teng, M.2    Irizarry, R.A.3
  • 13
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating high-throughput genomic analysis with Bioconductor
    • 25633503, 4509590
    • Huber W Carey VJ Gentleman R: Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12(2):115-121. 25633503 10.1038/nmeth.3252 4509590
    • (2015) Nat Methods , vol.12 , Issue.2 , pp. 115-121
    • Huber, W.1    Carey, V.J.2    Gentleman, R.3
  • 14
    • 84958058589 scopus 로고    scopus 로고
    • Classification of low quality cells from single-cell RNA-seq data
    • 26887813, 4758103
    • Ilicic T Kim JK Kolodziejczyk AA: Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016;17(1):29. 26887813 10.1186/s13059-016-0888-1 4758103
    • (2016) Genome Biol , vol.17 , Issue.1 , pp. 29
    • Ilicic, T.1    Kim, J.K.2    Kolodziejczyk, A.A.3
  • 15
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • 21543516, 3129258
    • Islam S Kjällquist U Moliner A: Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21(7):1160-1167. 21543516 10.1101/gr.110882.110 3129258
    • (2011) Genome Res , vol.21 , Issue.7 , pp. 1160-1167
    • Islam, S.1    Kjällquist, U.2    Moliner, A.3
  • 16
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • 24363023
    • Islam S Zeisel A Joost S: Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11(2):163-166. 24363023 10.1038/nmeth.2772
    • (2014) Nat Methods , vol.11 , Issue.2 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3
  • 17
    • 84982806105 scopus 로고    scopus 로고
    • TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
    • 27179027, 4994863
    • Ji Z Ji H: TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016;44(13):e117. 27179027 10.1093/nar/gkw430 4994863
    • (2016) Nucleic Acids Res , vol.44 , Issue.13
    • Ji, Z.1    Ji, H.2
  • 18
    • 84947805126 scopus 로고    scopus 로고
    • Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq
    • 26099264, 4595899
    • Juliá M Telenti A Rausell A: Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics. 2015;31(20):3380-3382. 26099264 10.1093/bioinformatics/btv368 4595899
    • (2015) Bioinformatics , vol.31 , Issue.20 , pp. 3380-3382
    • Juliá, M.1    Telenti, A.2    Rausell, A.3
  • 19
    • 84944901262 scopus 로고    scopus 로고
    • Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
    • 26489834, 4627577
    • Kim JK Kolodziejczyk AA Ilicic T: Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun. 2015;6:8687. 26489834 10.1038/ncomms9687 4627577
    • (2015) Nat Commun , vol.6 , pp. 8687
    • Kim, J.K.1    Kolodziejczyk, A.A.2    Ilicic, T.3
  • 20
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • 26000487, 4441768
    • Klein AM Mazutis L Akartuna I: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187-1201. 26000487 10.1016/j.cell.2015.04.044 4441768
    • (2015) Cell , vol.161 , Issue.5 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3
  • 21
    • 84947748539 scopus 로고    scopus 로고
    • Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation
    • 26431182, 4595712
    • Kolodziejczyk AA Kim JK Tsang JC: Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation. Cell Stem Cell. 2015;17(4):471-485. 26431182 10.1016/j.stem.2015.09.011 4595712
    • (2015) Cell Stem Cell , vol.17 , Issue.4 , pp. 471-485
    • Kolodziejczyk, A.A.1    Kim, J.K.2    Tsang, J.C.3
  • 22
    • 40049099114 scopus 로고    scopus 로고
    • Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R
    • 18024473
    • Langfelder P Zhang B Horvath S: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics. 2008;24(5):719-720. 18024473 10.1093/bioinformatics/btm563
    • (2008) Bioinformatics , vol.24 , Issue.5 , pp. 719-720
    • Langfelder, P.1    Zhang, B.2    Horvath, S.3
  • 23
    • 84896735766 scopus 로고    scopus 로고
    • voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • 24485249, 4053721
    • Law CW Chen Y Shi W: voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29. 24485249 10.1186/gb-2014-15-2-r29 4053721
    • (2014) Genome Biol , vol.15 , Issue.2 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3
  • 24
    • 84959122613 scopus 로고    scopus 로고
    • Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments
    • 26301841, 4589503
    • Leng N Chu LF Barry C: Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat Methods. 2015;12(10):947-950. 26301841 10.1038/nmeth.3549 4589503
    • (2015) Nat Methods , vol.12 , Issue.10 , pp. 947-950
    • Leng, N.1    Chu, L.F.2    Barry, C.3
  • 25
    • 84878580738 scopus 로고    scopus 로고
    • The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote
    • 23558742, 3664803
    • Liao Y Smyth GK Shi W: The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108. 23558742 10.1093/nar/gkt214 3664803
    • (2013) Nucleic Acids Res , vol.41 , Issue.10
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 26
    • 84897397058 scopus 로고    scopus 로고
    • featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
    • 24227677
    • Liao Y Smyth GK Shi W: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-930. 24227677 10.1093/bioinformatics/btt656
    • (2014) Bioinformatics , vol.30 , Issue.7 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 27
    • 84961845460 scopus 로고    scopus 로고
    • RNA-Seq workflow: gene-level exploratory analysis and differential expression [version 1; referees: 2 approved]
    • 26674615, 4670015
    • Love MI Anders S Kim V: RNA-Seq workflow: gene-level exploratory analysis and differential expression [version 1; referees: 2 approved]. F1000Res. 2015;4:1070. 26674615 10.12688/f1000research.7035.1 4670015
    • (2015) F1000Res , vol.4 , pp. 1070
    • Love, M.I.1    Anders, S.2    Kim, V.3
  • 28
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • 25516281, 4302049
    • Love MI Huber W Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. 25516281 10.1186/s13059-014-0550-8 4302049
    • (2014) Genome Biol , vol.15 , Issue.12 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 29
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • 27122128, 4848819
    • Lun AT Bach K Marioni JC: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17:75. 27122128 10.1186/s13059-016-0947-7 4848819
    • (2016) Genome Biol , vol.17 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 30
    • 84929684999 scopus 로고    scopus 로고
    • Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets
    • 26000488, 4481139
    • Macosko EZ Basu A Satija R: Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015;161(5):1202-1214. 26000488 10.1016/j.cell.2015.05.002 4481139
    • (2015) Cell , vol.161 , Issue.5 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3
  • 31
    • 84901188210 scopus 로고    scopus 로고
    • Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis
    • 24813893, 4039991
    • Mahata B Zhang X Kolodziejczyk AA: Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014;7(4):1130-1142. 24813893 10.1016/j.celrep.2014.04.011 4039991
    • (2014) Cell Rep , vol.7 , Issue.4 , pp. 1130-1142
    • Mahata, B.1    Zhang, X.2    Kolodziejczyk, A.A.3
  • 32
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
    • 24299736, 3941114
    • Marinov GK Williams BA McCue K: From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014;24(3):496-510. 24299736 10.1101/gr.161034.113 3941114
    • (2014) Genome Res , vol.24 , Issue.3 , pp. 496-510
    • Marinov, G.K.1    Williams, B.A.2    McCue, K.3
  • 33
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • 22287627, 3378882
    • McCarthy DJ Chen Y Smyth GK: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288-4297. 22287627 10.1093/nar/gks042 3378882
    • (2012) Nucleic Acids Res , vol.40 , Issue.10 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 34
    • 85010007467 scopus 로고    scopus 로고
    • scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R
    • McCarthy DJ Campbell KR Lun AT: scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R. bioRxiv. 2016. 10.1101/069633
    • (2016) bioRxiv
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.3
  • 35
    • 84976335724 scopus 로고    scopus 로고
    • Accurate, fast, and model-aware transcript expression quantification with Salmon
    • Patro R Duggal G Kingsford C: Accurate, fast, and model-aware transcript expression quantification with Salmon. bioRxiv. 2015. 10.1101/021592
    • (2015) bioRxiv
    • Patro, R.1    Duggal, G.2    Kingsford, C.3
  • 36
    • 78149276744 scopus 로고    scopus 로고
    • Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn
    • 21044043
    • Phipson B Smyth GK: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat Appl Genet Mol Biol. 2010;9: Article39. 21044043 10.2202/1544-6115.1585
    • (2010) Stat Appl Genet Mol Biol , vol.9
    • Phipson, B.1    Smyth, G.K.2
  • 37
    • 84891677425 scopus 로고    scopus 로고
    • Full-length RNA-seq from single cells using Smart-seq2
    • 24385147
    • Picelli S Faridani OR Björklund AK: Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9(1):171-181. 24385147 10.1038/nprot.2014.006
    • (2014) Nat Protoc , vol.9 , Issue.1 , pp. 171-181
    • Picelli, S.1    Faridani, O.R.2    Björklund, A.K.3
  • 38
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • 25086649, 4191988
    • Pollen AA Nowakowski TJ Shuga J: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32(10):1053-1058. 25086649 10.1038/nbt.2967 4191988
    • (2014) Nat Biotechnol , vol.32 , Issue.10 , pp. 1053-1058
    • Pollen, A.A.1    Nowakowski, T.J.2    Shuga, J.3
  • 39
    • 84926507971 scopus 로고    scopus 로고
    • limma powers differential expression analyses for RNA-sequencing and microarray studies
    • 25605792, 4402510
    • Ritchie ME Phipson B Wu D: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. 25605792 10.1093/nar/gkv007 4402510
    • (2015) Nucleic Acids Res , vol.43 , Issue.7
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3
  • 40
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • 19910308, 2796818
    • Robinson MD McCarthy DJ Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140. 19910308 10.1093/bioinformatics/btp616 2796818
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 41
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • 20196867, 2864565
    • Robinson MD Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25. 20196867 10.1186/gb-2010-11-3-r25 2864565
    • (2010) Genome Biol , vol.11 , Issue.3 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 42
    • 84939772971 scopus 로고    scopus 로고
    • Computational assignment of cell-cycle stage from single-cell transcriptome data
    • 26142758
    • Scialdone A Natarajan KN Saraiva LR: Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. 2015;85:54-61. 26142758 10.1016/j.ymeth.2015.06.021
    • (2015) Methods , vol.85 , pp. 54-61
    • Scialdone, A.1    Natarajan, K.N.2    Saraiva, L.R.3
  • 43
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • 25628217
    • Stegle O Teichmann SA Marioni JC: Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16(3):133-145. 25628217 10.1038/nrg3833
    • (2015) Nat Rev Genet , vol.16 , Issue.3 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 44
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • 24658644, 4122333
    • Trapnell C Cacchiarelli D Grimsby J: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381-386. 24658644 10.1038/nbt.2859 4122333
    • (2014) Nat Biotechnol , vol.32 , Issue.4 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3
  • 45
    • 85010276990 scopus 로고    scopus 로고
    • Batch effects and the effective design of single-cell gene expression studies
    • Tung PY Blischak JD Hsiao C: Batch effects and the effective design of single-cell gene expression studies. bioRxiv. 2016. 10.1101/062919
    • (2016) bioRxiv
    • Tung, P.Y.1    Blischak, J.D.2    Hsiao, C.3
  • 46
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian analysis of single-cell sequencing data
    • 26107944, 4480965
    • Vallejos CA Marioni JC Richardson S: BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol. 2015;11(6):e1004333. 26107944 10.1371/journal.pcbi.1004333 4480965
    • (2015) PLoS Comput Biol , vol.11 , Issue.6
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 48
    • 84940446838 scopus 로고    scopus 로고
    • Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
    • 26004780, 4460190
    • Wilson NK Kent DG Buettner F: Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 2015;16(6):712-724. 26004780 10.1016/j.stem.2015.04.004 4460190
    • (2015) Cell Stem Cell , vol.16 , Issue.6 , pp. 712-724
    • Wilson, N.K.1    Kent, D.G.2    Buettner, F.3
  • 49
    • 84924565530 scopus 로고    scopus 로고
    • Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • 25700174
    • Zeisel A Muñoz-Manchado AB Codeluppi S: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):1138-1142. 25700174 10.1126/science.aaa1934
    • (2015) Science , vol.347 , Issue.6226 , pp. 1138-1142
    • Zeisel, A.1    Muñoz-Manchado, A.B.2    Codeluppi, S.3
  • 50
    • 31144460961 scopus 로고    scopus 로고
    • GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors
    • 16467870
    • Zhu J Yamane H Cote-Sierra J: GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 2006;16(1):3-10. 16467870 10.1038/sj.cr.7310002
    • (2006) Cell Res , vol.16 , Issue.1 , pp. 3-10
    • Zhu, J.1    Yamane, H.2    Cote-Sierra, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.