-
1
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84894294885
-
Deep learning with COTS HPC systems
-
Association for Computing Machinery
-
Coates, A. et al. Deep learning with COTS HPC systems. In Proc. 30th International Conference on Machine Learning 1337-1345 (Association for Computing Machinery, 2013).
-
(2013)
Proc. 30th International Conference on Machine Learning
, pp. 1337-1345
-
-
Coates, A.1
-
3
-
-
84970003080
-
Deep learning with limited numerical precision
-
Association for Computing Machinery
-
Gupta, S., Agrawal, A., Gopalakrishnan, K. & Narayanan, P. Deep learning with limited numerical precision. In Proc. 30th International Conference on Machine Learning 1737-1746 (Association for Computing Machinery, 2015).
-
(2015)
Proc. 30th International Conference on Machine Learning
, pp. 1737-1746
-
-
Gupta, S.1
Agrawal, A.2
Gopalakrishnan, K.3
Narayanan, P.4
-
4
-
-
85028757466
-
-
Preprint
-
Merolla, P., Appuswamy, R., Arthur, J., Esser, S. K. & Modha, D. Deep neural networks are robust to weight binarization and other non-linear distortions. Preprint at https://arxiv.org/abs/1606.01981 (2016).
-
(2016)
Deep Neural Networks Are Robust to Weight Binarization and Other Non-linear Distortions
-
-
Merolla, P.1
Appuswamy, R.2
Arthur, J.3
Esser, S.K.4
Modha, D.5
-
6
-
-
85025594365
-
In-datacenter performance analysis of a tensor processing unit
-
Association for Computing Machinery
-
Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 2017 International Symposium on Computer Architecture 1-12 (Association for Computing Machinery, 2017).
-
(2017)
Proc. 2017 International Symposium on Computer Architecture
, pp. 1-12
-
-
Jouppi, N.P.1
-
7
-
-
84905915006
-
A million spiking-neuron integrated circuit with a scalable communication network and interface
-
Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668-673 (2014).
-
(2014)
Science
, vol.345
, pp. 668-673
-
-
Merolla, P.A.1
-
8
-
-
84991503397
-
Convolutional networks for fast, energy-efficient neuromorphic computing
-
Esser, S. K. et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl Acad. Sci. USA 113, 11441-11446 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 11441-11446
-
-
Esser, S.K.1
-
9
-
-
0028495068
-
An all-analog expandable neural network LSI with on-chip backpropagation learning
-
Morie, T. & Amemiya, Y. An all-analog expandable neural network LSI with on-chip backpropagation learning. IEEE J. Solid-State Circuits 29, 1086-1093 (1994).
-
(1994)
IEEE J. Solid-State Circuits
, vol.29
, pp. 1086-1093
-
-
Morie, T.1
Amemiya, Y.2
-
10
-
-
84940931791
-
Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element
-
IEEE
-
Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element. In 2014 IEEE International Electron Devices Meeting T29.5 (IEEE, 2014).
-
(2014)
2014 IEEE International Electron Devices Meeting T29.5
-
-
Burr, G.W.1
-
11
-
-
84946495902
-
Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element
-
Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element. IEEE Trans. Electron Dev. 62, 3498-3507 (2015).
-
(2015)
IEEE Trans. Electron Dev.
, vol.62
, pp. 3498-3507
-
-
Burr, G.W.1
-
12
-
-
84983247214
-
Acceleration of deep neural network training with resistive cross-point devices: Design considerations
-
Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training with resistive cross-point devices: design considerations. Front. Neurosci. 10, 333 (2016).
-
(2016)
Front. Neurosci.
, vol.10
, pp. 333
-
-
Gokmen, T.1
Vlasov, Y.2
-
13
-
-
85063661576
-
Neuromorphic computing using non-volatile memory
-
Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Physics X 2, 89-124 (2017).
-
(2017)
Adv. Physics X
, vol.2
, pp. 89-124
-
-
Burr, G.W.1
-
14
-
-
84964078185
-
Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect
-
IEEE
-
Yu, S. et al. Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect. In 2015 IEEE International Electron Devices Meeting 17.3 (IEEE, 2015).
-
(2015)
2015 IEEE International Electron Devices Meeting
, vol.17
, Issue.3
-
-
Yu, S.1
-
15
-
-
84946013859
-
Fully parallel write/read in resistive synaptic array for accelerating on-chip learning
-
Gao, L. et al. Fully parallel write/read in resistive synaptic array for accelerating on-chip learning. Nanotechnology 26, 455204 (2015).
-
(2015)
Nanotechnology
, vol.26
, pp. 455204
-
-
Gao, L.1
-
16
-
-
84929095672
-
Training and operation of an integrated neuromorphic network based on metal-oxide memristors
-
Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61-64 (2015).
-
(2015)
Nature
, vol.521
, pp. 61-64
-
-
Prezioso, M.1
-
17
-
-
84928736641
-
Optimization of conductance change in Pr1-xCaxMnO3-based synaptic devices for neuromorphic systems
-
Jang, J.-W., Park, S., Burr, G. W., Hwang, H. & Jeong, Y.-H. Optimization of conductance change in Pr1-xCaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Lett. 36, 457-459 (2015).
-
(2015)
IEEE Electron Device Lett.
, vol.36
, pp. 457-459
-
-
Jang, J.-W.1
Park, S.2
Burr, G.W.3
Hwang, H.4
Jeong, Y.-H.5
-
18
-
-
84945940891
-
Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor
-
Jeong, Y. J., Kim, S. & Lu, W. D. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor. Appl. Phys. Lett. 107, 173105 (2015).
-
(2015)
Appl. Phys. Lett.
, vol.107
, pp. 173105
-
-
Jeong, Y.J.1
Kim, S.2
Lu, W.D.3
-
19
-
-
84905267063
-
Ferroelectric artificial synapses for recognition of a multishaded image
-
Kaneko, Y., Nishitani, Y. & Ueda, M. Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans. Electron Dev. 61, 2827-2833 (2014).
-
(2014)
IEEE Trans. Electron Dev.
, vol.61
, pp. 2827-2833
-
-
Kaneko, Y.1
Nishitani, Y.2
Ueda, M.3
-
21
-
-
85014113270
-
A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
-
van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414-418 (2017).
-
(2017)
Nat. Mater.
, vol.16
, pp. 414-418
-
-
Van De Burgt, Y.1
-
22
-
-
85028085586
-
Achieving ideal accuracies in analog neuromorphic computing using periodic carry
-
IEEE
-
Agarwal, S. et al. Achieving ideal accuracies in analog neuromorphic computing using periodic carry. In 2017 Symposium on VLSI Technology T13.2 (IEEE, 2017).
-
(2017)
2017 Symposium on VLSI Technology
, vol.T13
, Issue.2
-
-
Agarwal, S.1
-
23
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324 (1998).
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
25
-
-
85029520494
-
Towards on-chip acceleration of the backpropagation algorithm using non-volatile memory
-
Narayanan, P. et al. Towards on-chip acceleration of the backpropagation algorithm using non-volatile memory. IBM J. Res. Develop. 61, 11 (2017).
-
(2017)
IBM J. Res. Develop.
, vol.61
, pp. 11
-
-
Narayanan, P.1
-
26
-
-
0022471098
-
Learning representations by backpropagating errors
-
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by backpropagating errors. Nature 323, 533-536 (1986).
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
27
-
-
84939225102
-
Parallel programming of resistive cross-point array for synaptic plasticity
-
Xu, Z. et al. Parallel programming of resistive cross-point array for synaptic plasticity. Procedia Comput. Sci. 41, 126-133 (2014).
-
(2014)
Procedia Comput. Sci.
, vol.41
, pp. 126-133
-
-
Xu, Z.1
-
29
-
-
84856173450
-
High-precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
-
Alibart, F., Gao, L., Hoskins, B. D. & Strukov, D. B. High-precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23, 075201 (2012).
-
(2012)
Nanotechnology
, vol.23
, pp. 075201
-
-
Alibart, F.1
Gao, L.2
Hoskins, B.D.3
Strukov, D.B.4
-
30
-
-
85012970134
-
Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication
-
Association for Computing Machinery
-
Hu, M. et al. Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication. In Proc. 53rd Annual Design Automation Conference 19 (Association for Computing Machinery, 2016).
-
(2016)
Proc. 53rd Annual Design Automation Conference
, vol.19
-
-
Hu, M.1
-
31
-
-
85007480302
-
Li-ion synaptic transistor for low power analog computing
-
Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2017).
-
(2017)
Adv. Mater.
, vol.29
, pp. 1604310
-
-
Fuller, E.J.1
-
32
-
-
85034014587
-
Analog CMOS-based resistive processing unit for deep neural network training
-
IEEE
-
Kim, S., Gokmen, T., Lee, H.-M. & Haensch, W. E. Analog CMOS-based resistive processing unit for deep neural network training. In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems 422-425 (IEEE, 2017).
-
(2017)
2017 IEEE 60th International Midwest Symposium on Circuits and Systems
, pp. 422-425
-
-
Kim, S.1
Gokmen, T.2
Lee, H.-M.3
Haensch, W.E.4
-
34
-
-
84904482223
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
Association for Computing Machinery
-
Donahue, J. et al. DeCAF: a deep convolutional activation feature for generic visual recognition. In Proc. 31st International Conference on Machine Learning 647-655 (Association for Computing Machinery, 2014).
-
(2014)
Proc. 31st International Conference on Machine Learning
, pp. 647-655
-
-
Donahue, J.1
-
35
-
-
84990032289
-
-
Preprint
-
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the Inception architecture for computer vision. Preprint at https://arxiv.org/abs/1512.00567 (2015).
-
(2015)
Rethinking the Inception Architecture for Computer Vision
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
36
-
-
85048214654
-
NVIDIA Volta GV100 12nm FinFET GPU detailed-Tesla V100 specifications include 21 billion transistors, 5120 CUDA cores, 16 Gb HBM2 with 900 Gb/s bandwidth
-
Mujtaba, H. Nvidia Volta GV100 12nm FinFET GPU detailed-Tesla V100 specifications include 21 billion transistors, 5120 CUDA cores, 16 GB HBM2 with 900 GB/s bandwidth. Wccftech https://wccftech.com/nvidia-volta-gv 100-gpu-tesla-v100-architecture-specifications-deep-dive/(2017).
-
(2017)
Wccftech
-
-
Mujtaba, H.1
-
38
-
-
84943799837
-
-
Preprint
-
Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. Preprint at https://arxiv.org/abs/1409.1259 (2014).
-
(2014)
On the Properties of Neural Machine Translation: Encoder-decoder Approaches
-
-
Cho, K.1
Van Merrienboer, B.2
Bahdanau, D.3
Bengio, Y.4
-
39
-
-
84905041584
-
Access devices for 3D crosspoint memory
-
Burr, G. W. et al. Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. B 32, 040802 (2014).
-
(2014)
J. Vac. Sci. Technol. B
, vol.32
, pp. 040802
-
-
Burr, G.W.1
-
40
-
-
85029492446
-
Reducing circuit design complexity for neuromorphic machine learning systems based on non-volatile memory arrays
-
IEEE
-
Narayanan, P. et al. Reducing circuit design complexity for neuromorphic machine learning systems based on non-volatile memory arrays. In 2017 IEEE International Symposium on Circuits and Systems 1-4 (IEEE, 2017).
-
(2017)
2017 IEEE International Symposium on Circuits and Systems
, pp. 1-4
-
-
Narayanan, P.1
-
41
-
-
33847681762
-
Recovery and drift dynamics of resistance and threshold voltages in phase-change memories
-
Ielmini, D., Lacaita, A. L. & Mantegazza, D. Recovery and drift dynamics of resistance and threshold voltages in phase-change memories. IEEE Trans. Electron Dev. 54, 308-315 (2007).
-
(2007)
IEEE Trans. Electron Dev.
, vol.54
, pp. 308-315
-
-
Ielmini, D.1
Lacaita, A.L.2
Mantegazza, D.3
-
42
-
-
0024754187
-
Matching properties of MOS transistors
-
Pelgrom, M. J. M., Duinmaijer, A. C. J. & Welbers, A. P. G. Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24, 1433-1439 (1989).
-
(1989)
IEEE J. Solid-State Circuits
, vol.24
, pp. 1433-1439
-
-
Pelgrom, M.J.M.1
Duinmaijer, A.C.J.2
Welbers, A.P.G.3
-
43
-
-
84964819547
-
What is predictive technology model (PTM)?
-
Cao, Y. What is predictive technology model (PTM)? SIGDA Newsl. 39, 1 (2009).
-
(2009)
SIGDA Newsl.
, vol.39
, pp. 1
-
-
Cao, Y.1
-
44
-
-
70049091039
-
Curriculum learning
-
ACM
-
Bengio, Y. Louradour, J. Collobert, R. & Weston, J. Curriculum learning. In Proc. 26th Annual International Conference on Machine Learning 41-48 (ACM, 2009).
-
(2009)
Proc. 26th Annual International Conference on Machine Learning
, pp. 41-48
-
-
Bengio, Y.1
Louradour, J.2
Collobert, R.3
Weston, J.4
|