메뉴 건너뛰기




Volumn 558, Issue 7708, 2018, Pages 60-67

Equivalent-accuracy accelerated neural-network training using analogue memory

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY ASSESSMENT; ALGORITHM; ARTIFICIAL NEURAL NETWORK; DATA SET; HARDWARE; MEMORY; SOFTWARE;

EID: 85048244412     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/s41586-018-0180-5     Document Type: Article
Times cited : (950)

References (44)
  • 2
    • 84894294885 scopus 로고    scopus 로고
    • Deep learning with COTS HPC systems
    • Association for Computing Machinery
    • Coates, A. et al. Deep learning with COTS HPC systems. In Proc. 30th International Conference on Machine Learning 1337-1345 (Association for Computing Machinery, 2013).
    • (2013) Proc. 30th International Conference on Machine Learning , pp. 1337-1345
    • Coates, A.1
  • 6
    • 85025594365 scopus 로고    scopus 로고
    • In-datacenter performance analysis of a tensor processing unit
    • Association for Computing Machinery
    • Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 2017 International Symposium on Computer Architecture 1-12 (Association for Computing Machinery, 2017).
    • (2017) Proc. 2017 International Symposium on Computer Architecture , pp. 1-12
    • Jouppi, N.P.1
  • 7
    • 84905915006 scopus 로고    scopus 로고
    • A million spiking-neuron integrated circuit with a scalable communication network and interface
    • Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668-673 (2014).
    • (2014) Science , vol.345 , pp. 668-673
    • Merolla, P.A.1
  • 8
    • 84991503397 scopus 로고    scopus 로고
    • Convolutional networks for fast, energy-efficient neuromorphic computing
    • Esser, S. K. et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl Acad. Sci. USA 113, 11441-11446 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 11441-11446
    • Esser, S.K.1
  • 9
    • 0028495068 scopus 로고
    • An all-analog expandable neural network LSI with on-chip backpropagation learning
    • Morie, T. & Amemiya, Y. An all-analog expandable neural network LSI with on-chip backpropagation learning. IEEE J. Solid-State Circuits 29, 1086-1093 (1994).
    • (1994) IEEE J. Solid-State Circuits , vol.29 , pp. 1086-1093
    • Morie, T.1    Amemiya, Y.2
  • 10
    • 84940931791 scopus 로고    scopus 로고
    • Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element
    • IEEE
    • Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element. In 2014 IEEE International Electron Devices Meeting T29.5 (IEEE, 2014).
    • (2014) 2014 IEEE International Electron Devices Meeting T29.5
    • Burr, G.W.1
  • 11
    • 84946495902 scopus 로고    scopus 로고
    • Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element
    • Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element. IEEE Trans. Electron Dev. 62, 3498-3507 (2015).
    • (2015) IEEE Trans. Electron Dev. , vol.62 , pp. 3498-3507
    • Burr, G.W.1
  • 12
    • 84983247214 scopus 로고    scopus 로고
    • Acceleration of deep neural network training with resistive cross-point devices: Design considerations
    • Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training with resistive cross-point devices: design considerations. Front. Neurosci. 10, 333 (2016).
    • (2016) Front. Neurosci. , vol.10 , pp. 333
    • Gokmen, T.1    Vlasov, Y.2
  • 13
    • 85063661576 scopus 로고    scopus 로고
    • Neuromorphic computing using non-volatile memory
    • Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Physics X 2, 89-124 (2017).
    • (2017) Adv. Physics X , vol.2 , pp. 89-124
    • Burr, G.W.1
  • 14
    • 84964078185 scopus 로고    scopus 로고
    • Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect
    • IEEE
    • Yu, S. et al. Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect. In 2015 IEEE International Electron Devices Meeting 17.3 (IEEE, 2015).
    • (2015) 2015 IEEE International Electron Devices Meeting , vol.17 , Issue.3
    • Yu, S.1
  • 15
    • 84946013859 scopus 로고    scopus 로고
    • Fully parallel write/read in resistive synaptic array for accelerating on-chip learning
    • Gao, L. et al. Fully parallel write/read in resistive synaptic array for accelerating on-chip learning. Nanotechnology 26, 455204 (2015).
    • (2015) Nanotechnology , vol.26 , pp. 455204
    • Gao, L.1
  • 16
    • 84929095672 scopus 로고    scopus 로고
    • Training and operation of an integrated neuromorphic network based on metal-oxide memristors
    • Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61-64 (2015).
    • (2015) Nature , vol.521 , pp. 61-64
    • Prezioso, M.1
  • 17
    • 84928736641 scopus 로고    scopus 로고
    • Optimization of conductance change in Pr1-xCaxMnO3-based synaptic devices for neuromorphic systems
    • Jang, J.-W., Park, S., Burr, G. W., Hwang, H. & Jeong, Y.-H. Optimization of conductance change in Pr1-xCaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Lett. 36, 457-459 (2015).
    • (2015) IEEE Electron Device Lett. , vol.36 , pp. 457-459
    • Jang, J.-W.1    Park, S.2    Burr, G.W.3    Hwang, H.4    Jeong, Y.-H.5
  • 18
    • 84945940891 scopus 로고    scopus 로고
    • Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor
    • Jeong, Y. J., Kim, S. & Lu, W. D. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor. Appl. Phys. Lett. 107, 173105 (2015).
    • (2015) Appl. Phys. Lett. , vol.107 , pp. 173105
    • Jeong, Y.J.1    Kim, S.2    Lu, W.D.3
  • 19
    • 84905267063 scopus 로고    scopus 로고
    • Ferroelectric artificial synapses for recognition of a multishaded image
    • Kaneko, Y., Nishitani, Y. & Ueda, M. Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans. Electron Dev. 61, 2827-2833 (2014).
    • (2014) IEEE Trans. Electron Dev. , vol.61 , pp. 2827-2833
    • Kaneko, Y.1    Nishitani, Y.2    Ueda, M.3
  • 21
    • 85014113270 scopus 로고    scopus 로고
    • A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
    • van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414-418 (2017).
    • (2017) Nat. Mater. , vol.16 , pp. 414-418
    • Van De Burgt, Y.1
  • 22
    • 85028085586 scopus 로고    scopus 로고
    • Achieving ideal accuracies in analog neuromorphic computing using periodic carry
    • IEEE
    • Agarwal, S. et al. Achieving ideal accuracies in analog neuromorphic computing using periodic carry. In 2017 Symposium on VLSI Technology T13.2 (IEEE, 2017).
    • (2017) 2017 Symposium on VLSI Technology , vol.T13 , Issue.2
    • Agarwal, S.1
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324 (1998).
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 25
    • 85029520494 scopus 로고    scopus 로고
    • Towards on-chip acceleration of the backpropagation algorithm using non-volatile memory
    • Narayanan, P. et al. Towards on-chip acceleration of the backpropagation algorithm using non-volatile memory. IBM J. Res. Develop. 61, 11 (2017).
    • (2017) IBM J. Res. Develop. , vol.61 , pp. 11
    • Narayanan, P.1
  • 26
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by backpropagating errors. Nature 323, 533-536 (1986).
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 27
    • 84939225102 scopus 로고    scopus 로고
    • Parallel programming of resistive cross-point array for synaptic plasticity
    • Xu, Z. et al. Parallel programming of resistive cross-point array for synaptic plasticity. Procedia Comput. Sci. 41, 126-133 (2014).
    • (2014) Procedia Comput. Sci. , vol.41 , pp. 126-133
    • Xu, Z.1
  • 29
    • 84856173450 scopus 로고    scopus 로고
    • High-precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
    • Alibart, F., Gao, L., Hoskins, B. D. & Strukov, D. B. High-precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23, 075201 (2012).
    • (2012) Nanotechnology , vol.23 , pp. 075201
    • Alibart, F.1    Gao, L.2    Hoskins, B.D.3    Strukov, D.B.4
  • 30
    • 85012970134 scopus 로고    scopus 로고
    • Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication
    • Association for Computing Machinery
    • Hu, M. et al. Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication. In Proc. 53rd Annual Design Automation Conference 19 (Association for Computing Machinery, 2016).
    • (2016) Proc. 53rd Annual Design Automation Conference , vol.19
    • Hu, M.1
  • 31
    • 85007480302 scopus 로고    scopus 로고
    • Li-ion synaptic transistor for low power analog computing
    • Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2017).
    • (2017) Adv. Mater. , vol.29 , pp. 1604310
    • Fuller, E.J.1
  • 34
    • 84904482223 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • Association for Computing Machinery
    • Donahue, J. et al. DeCAF: a deep convolutional activation feature for generic visual recognition. In Proc. 31st International Conference on Machine Learning 647-655 (Association for Computing Machinery, 2014).
    • (2014) Proc. 31st International Conference on Machine Learning , pp. 647-655
    • Donahue, J.1
  • 36
    • 85048214654 scopus 로고    scopus 로고
    • NVIDIA Volta GV100 12nm FinFET GPU detailed-Tesla V100 specifications include 21 billion transistors, 5120 CUDA cores, 16 Gb HBM2 with 900 Gb/s bandwidth
    • Mujtaba, H. Nvidia Volta GV100 12nm FinFET GPU detailed-Tesla V100 specifications include 21 billion transistors, 5120 CUDA cores, 16 GB HBM2 with 900 GB/s bandwidth. Wccftech https://wccftech.com/nvidia-volta-gv 100-gpu-tesla-v100-architecture-specifications-deep-dive/(2017).
    • (2017) Wccftech
    • Mujtaba, H.1
  • 39
    • 84905041584 scopus 로고    scopus 로고
    • Access devices for 3D crosspoint memory
    • Burr, G. W. et al. Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. B 32, 040802 (2014).
    • (2014) J. Vac. Sci. Technol. B , vol.32 , pp. 040802
    • Burr, G.W.1
  • 40
    • 85029492446 scopus 로고    scopus 로고
    • Reducing circuit design complexity for neuromorphic machine learning systems based on non-volatile memory arrays
    • IEEE
    • Narayanan, P. et al. Reducing circuit design complexity for neuromorphic machine learning systems based on non-volatile memory arrays. In 2017 IEEE International Symposium on Circuits and Systems 1-4 (IEEE, 2017).
    • (2017) 2017 IEEE International Symposium on Circuits and Systems , pp. 1-4
    • Narayanan, P.1
  • 41
    • 33847681762 scopus 로고    scopus 로고
    • Recovery and drift dynamics of resistance and threshold voltages in phase-change memories
    • Ielmini, D., Lacaita, A. L. & Mantegazza, D. Recovery and drift dynamics of resistance and threshold voltages in phase-change memories. IEEE Trans. Electron Dev. 54, 308-315 (2007).
    • (2007) IEEE Trans. Electron Dev. , vol.54 , pp. 308-315
    • Ielmini, D.1    Lacaita, A.L.2    Mantegazza, D.3
  • 43
    • 84964819547 scopus 로고    scopus 로고
    • What is predictive technology model (PTM)?
    • Cao, Y. What is predictive technology model (PTM)? SIGDA Newsl. 39, 1 (2009).
    • (2009) SIGDA Newsl. , vol.39 , pp. 1
    • Cao, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.