-
2
-
-
80053452150
-
Bayesian learning via stochastic gradient langevin dynamics
-
M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
-
(2011)
ICML
-
-
Welling, M.1
Teh, Y.W.2
-
3
-
-
84923309614
-
Firefly Monte Carlo: Exact MCMC with subsets of data
-
D. Maclaurin and R. P. Adams. Firefly Monte Carlo: Exact MCMC with subsets of data. In UAI, 2014.
-
(2014)
UAI
-
-
Maclaurin, D.1
Adams, R.P.2
-
7
-
-
85047007442
-
Provable Bayesian inference via particle mirror descent
-
B. Dai, N. He, H. Dai, and L. Song. Provable Bayesian inference via particle mirror descent. In AISTATS, 2016.
-
(2016)
AISTATS
-
-
Dai, B.1
He, N.2
Dai, H.3
Song, L.4
-
11
-
-
84965097708
-
Measuring sample quality with Stein's method
-
J. Gorham and L. Mackey. Measuring sample quality with Stein's method. In NIPS, pages 226-234, 2015.
-
(2015)
NIPS
, pp. 226-234
-
-
Gorham, J.1
Mackey, L.2
-
13
-
-
84969776493
-
Variational inference with normalizing flows
-
D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In ICML, 2015.
-
(2015)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
-
17
-
-
77953218689
-
Random features for large-scale kernel machines
-
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177-1184, 2007.
-
(2007)
NIPS
, pp. 1177-1184
-
-
Rahimi, A.1
Recht, B.2
-
19
-
-
84919786928
-
Doubly stochastic variational bayes for non-conjugate inference
-
M. Titsias and M. Lázaro-Gredilla. Doubly stochastic variational Bayes for non-conjugate inference. In ICML, pages 1971-1979, 2014.
-
(2014)
ICML
, pp. 1971-1979
-
-
Titsias, M.1
Lázaro-Gredilla, M.2
-
20
-
-
84877742737
-
Affine independent variational inference
-
E. Challis and D. Barber. Affine independent variational inference. In NIPS, 2012.
-
(2012)
NIPS
-
-
Challis, E.1
Barber, D.2
-
23
-
-
84898985963
-
Approximating posterior distributions in belief networks using mixtures
-
C. M. B. N. Lawrence and T. J. M. I. Jordan. Approximating posterior distributions in belief networks using mixtures. In NIPS, 1998.
-
(1998)
NIPS
-
-
Lawrence, C.M.B.N.1
Jordan, T.J.M.I.2
-
24
-
-
0001837853
-
Improving the mean field approximation via the use of mixture distributions
-
MIT Press
-
T. S. Jaakkola and M. I. Jordon. Improving the mean field approximation via the use of mixture distributions. In Learning in graphical models, pages 163-173. MIT Press, 1999.
-
(1999)
Learning in Graphical Models
, pp. 163-173
-
-
Jaakkola, T.S.1
Jordon, M.I.2
-
29
-
-
84901687683
-
The no-U-turn sampler: Adaptively setting path lengths in hamiltonian Monte Carlo
-
M. D. Hoffman and A. Gelman. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. The Journal of Machine Learning Research, 15(1):1593-1623, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1593-1623
-
-
Hoffman, M.D.1
Gelman, A.2
-
30
-
-
84969909658
-
Probabilistic backpropagation for scalable learning of Bayesian neural networks
-
J. M. Hernández-Lobato and R. P. Adams. Probabilistic backpropagation for scalable learning of Bayesian neural networks. In ICML, 2015.
-
(2015)
ICML
-
-
Hernández-Lobato, J.M.1
Adams, R.P.2
-
31
-
-
84855997153
-
Use of exchangeable pairs in the analysis of simulations
-
Institute of Mathematical Statistics
-
C. Stein, P. Diaconis, S. Holmes, G. Reinert, et al Use of exchangeable pairs in the analysis of simulations. In Stein's Method, pages 1-25. Institute of Mathematical Statistics, 2004.
-
(2004)
Stein's Method
, pp. 1-25
-
-
Stein, C.1
Diaconis, P.2
Holmes, S.3
Reinert, G.4
|