-
1
-
-
0000359337
-
Backpropa-gation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropa-gation applied to handwritten zip code recognition. Neural Computation, 1989.
-
(1989)
Neural Computation
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
2
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
3
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
4
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liui, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liui, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
6
-
-
84970002232
-
Show, attend and tell: Neural image caption generation with visual attention
-
K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In ICML, 2015.
-
(2015)
ICML
-
-
Xu, K.1
Ba, J.L.2
Kiros, R.3
Cho, K.4
Courville, A.5
Salakhutdinov, R.6
Zemel, R.S.7
Bengio, Y.8
-
7
-
-
84986301177
-
What value do explicit high level concepts have in vision to language problems?
-
Q. Wu, C. Shen, A. Hengel, L. Liu, and A. Dick. What value do explicit high level concepts have in vision to language problems? In CVPR, 2016.
-
(2016)
CVPR
-
-
Wu, Q.1
Shen, C.2
Hengel, A.3
Liu, L.4
Dick, A.5
-
8
-
-
85014542702
-
A deep generative deconvolutional image model
-
Y. Pu, X. Yuan, A. Stevens, C. Li, and L. Carin. A deep generative deconvolutional image model. In AISTATS, 2016.
-
(2016)
AISTATS
-
-
Pu, Y.1
Yuan, X.2
Stevens, A.3
Li, C.4
Carin, L.5
-
9
-
-
85083953057
-
Generative deep deconvolutional learning
-
Y. Pu, X. Yuan, and L. Carin. Generative deep deconvolutional learning. In ICLR workshop, 2015.
-
(2015)
ICLR Workshop
-
-
Pu, Y.1
Yuan, X.2
Carin, L.3
-
10
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
11
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
12
-
-
79957844365
-
Data augmentation for support vector machines
-
N. G. Polson and S. L. Scott. Data augmentation for support vector machines. Bayes. Anal., 2011.
-
(2011)
Bayes. Anal.
-
-
Polson, N.G.1
Scott, S.L.2
-
14
-
-
84980003413
-
Learning to generate chairs, tables and cars with convolutional networks
-
A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, and T. Brox. Learning to generate chairs, tables and cars with convolutional networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Dosovitskiy, A.1
Springenberg, J.T.2
Tatarchenko, M.3
Brox, T.4
-
17
-
-
85018902556
-
Bayesian nonlinear SVMs and factor modeling
-
R. Henao, X. Yuan, and L. Carin. Bayesian nonlinear SVMs and factor modeling. NIPS, 2014.
-
(2014)
NIPS
-
-
Henao, R.1
Yuan, X.2
Carin, L.3
-
19
-
-
84961291190
-
Learning phrase representations using rnn encoder-decoder for statistical machine translation
-
K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In EMNLP, 2014.
-
(2014)
EMNLP
-
-
Cho, K.1
Merrienboer, B.V.2
Gulcehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Bengio, Y.7
-
20
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
21
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
22
-
-
84897544737
-
Theano: New features and speed improvements
-
F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio. Theano: new features and speed improvements. In NIPS Workshop, 2012.
-
(2012)
NIPS Workshop
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
24
-
-
34047174674
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
F. Li, F. Rob, and P. Perona. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 2007.
-
(2007)
Computer Vision and Image Understanding
-
-
Li, F.1
Rob, F.2
Perona, P.3
-
27
-
-
84965136229
-
Semi-supervised learning with ladder networks
-
A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-supervised learning with ladder networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Rasmus, A.1
Berglund, M.2
Honkala, M.3
Valpola, H.4
Raiko, T.5
-
28
-
-
84959250180
-
From captions to visual concepts and back
-
H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell, J. C. Platt, C. L. Zitnick, and G. Zweig. From captions to visual concepts and back. In CVPR, 2015.
-
(2015)
CVPR
-
-
Fang, H.1
Gupta, S.2
Iandola, F.3
Srivastava, R.4
Deng, L.5
Dollár, P.6
Gao, J.7
He, X.8
Mitchell, M.9
Platt, J.C.10
Zitnick, C.L.11
Zweig, G.12
-
31
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
33
-
-
85116156579
-
Meteor: An automatic metric for MT evaluation with improved correlation with human judgments
-
S. Banerjee and A. Lavie. Meteor: An automatic metric for MT evaluation with improved correlation with human judgments. In ACL workshop, 2005.
-
(2005)
ACL Workshop
-
-
Banerjee, S.1
Lavie, A.2
-
34
-
-
84956980995
-
Cider: Consensus-based image description evaluation
-
R. Vedantam, Z. C. Lawrence, and D. Parikh. Cider: Consensus-based image description evaluation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Vedantam, R.1
Lawrence, Z.C.2
Parikh, D.3
|