메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2360-2368

Variational autoencoder for deep learning of images, labels and captions

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; IMAGE RETRIEVAL; LEARNING SYSTEMS; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS; SIGNAL ENCODING;

EID: 85018916536     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (752)

References (34)
  • 2
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 3
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 5
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, 2015.
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 7
    • 84986301177 scopus 로고    scopus 로고
    • What value do explicit high level concepts have in vision to language problems?
    • Q. Wu, C. Shen, A. Hengel, L. Liu, and A. Dick. What value do explicit high level concepts have in vision to language problems? In CVPR, 2016.
    • (2016) CVPR
    • Wu, Q.1    Shen, C.2    Hengel, A.3    Liu, L.4    Dick, A.5
  • 9
    • 85083953057 scopus 로고    scopus 로고
    • Generative deep deconvolutional learning
    • Y. Pu, X. Yuan, and L. Carin. Generative deep deconvolutional learning. In ICLR workshop, 2015.
    • (2015) ICLR Workshop
    • Pu, Y.1    Yuan, X.2    Carin, L.3
  • 10
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 11
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 12
    • 79957844365 scopus 로고    scopus 로고
    • Data augmentation for support vector machines
    • N. G. Polson and S. L. Scott. Data augmentation for support vector machines. Bayes. Anal., 2011.
    • (2011) Bayes. Anal.
    • Polson, N.G.1    Scott, S.L.2
  • 14
    • 84980003413 scopus 로고    scopus 로고
    • Learning to generate chairs, tables and cars with convolutional networks
    • A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, and T. Brox. Learning to generate chairs, tables and cars with convolutional networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Springenberg, J.T.2    Tatarchenko, M.3    Brox, T.4
  • 15
    • 84965165777 scopus 로고    scopus 로고
    • Max-margin deep generative models
    • C. Li, J. Zhu, T. Shi, and B. Zhang. Max-margin deep generative models. In NIPS, 2015.
    • (2015) NIPS
    • Li, C.1    Zhu, J.2    Shi, T.3    Zhang, B.4
  • 17
    • 85018902556 scopus 로고    scopus 로고
    • Bayesian nonlinear SVMs and factor modeling
    • R. Henao, X. Yuan, and L. Carin. Bayesian nonlinear SVMs and factor modeling. NIPS, 2014.
    • (2014) NIPS
    • Henao, R.1    Yuan, X.2    Carin, L.3
  • 20
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 21
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 24
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • F. Li, F. Rob, and P. Perona. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 2007.
    • (2007) Computer Vision and Image Understanding
    • Li, F.1    Rob, F.2    Perona, P.3
  • 33
    • 85116156579 scopus 로고    scopus 로고
    • Meteor: An automatic metric for MT evaluation with improved correlation with human judgments
    • S. Banerjee and A. Lavie. Meteor: An automatic metric for MT evaluation with improved correlation with human judgments. In ACL workshop, 2005.
    • (2005) ACL Workshop
    • Banerjee, S.1    Lavie, A.2
  • 34
    • 84956980995 scopus 로고    scopus 로고
    • Cider: Consensus-based image description evaluation
    • R. Vedantam, Z. C. Lawrence, and D. Parikh. Cider: Consensus-based image description evaluation. In CVPR, 2015.
    • (2015) CVPR
    • Vedantam, R.1    Lawrence, Z.C.2    Parikh, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.