-
1
-
-
84867133463
-
Variational Bayesian inference with stochastic search
-
Blei, D. M., and Jordan., M. I., and Paisley, J. W. (2012). Variational Bayesian inference with Stochastic Search. In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages 1367-1374.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning (ICML-12)
, pp. 1367-1374
-
-
Blei, D.M.1
Jordan, M.I.2
Paisley, J.W.3
-
2
-
-
84998888548
-
-
arXiv preprint arXiv:1511.06349
-
Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S. (2015). Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349.
-
(2015)
Generating Sentences from a Continuous Space
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyals, O.3
Dai, A.M.4
Jozefowicz, R.5
Bengio, S.6
-
8
-
-
84964492709
-
-
arXiv preprint arXiv:1502.03509
-
Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). Made: Masked autoencoder for distribution estimation. arXiv preprint arXiv:1502.03509.
-
(2015)
Made: Masked Autoencoder for Distribution Estimation
-
-
Germain, M.1
Gregor, K.2
Murray, I.3
Larochelle, H.4
-
9
-
-
85018886361
-
-
arXiv preprint arXiv:1604.08772
-
Gregor, K., Besse, F., Rezende, D. J., Danihelka, I., and Wierstra, D. (2016). Towards conceptual compression. arXiv preprint arXiv:1604.08772.
-
(2016)
Towards Conceptual Compression
-
-
Gregor, K.1
Besse, F.2
Rezende, D.J.3
Danihelka, I.4
Wierstra, D.5
-
11
-
-
84958589374
-
-
arXiv preprint arXiv:1512.03385
-
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385.
-
(2015)
Deep Residual Learning for Image Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
84990068011
-
-
arXiv preprint arXiv:1603.05027
-
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027.
-
(2016)
Identity Mappings in Deep Residual Networks
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, M. D., and Blei., D. M., Wang, C., and Paisley, J. (2013). Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303-1347.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
14
-
-
84969972527
-
An empirical exploration of recurrent network architectures
-
Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015). An empirical exploration of recurrent network architectures. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 2342-2350.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 2342-2350
-
-
Jozefowicz, R.1
Zaremba, W.2
Sutskever, I.3
-
15
-
-
85018887151
-
-
arXiv preprint arXiv:1602.02282
-
Kaae Sønderby, C., Raiko, T., Maaløe, L., Kaae Sønderby, S., and Winther, O. (2016). How to train deep variational autoencoders and probabilistic ladder networks. arXiv preprint arXiv:1602.02282.
-
(2016)
How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
-
-
Kaae Sønderby, C.1
Raiko, T.2
Maaløe, L.3
Kaae Sønderby, S.4
Winther, O.5
-
19
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1278-1286.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning (ICML-14)
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
23
-
-
85018934798
-
-
arXiv preprint arXiv:1503.03585
-
Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. arXiv preprint arXiv:1503.03585.
-
(2015)
Deep Unsupervised Learning Using Nonequilibrium Thermodynamics
-
-
Sohl-Dickstein, J.1
Weiss, E.A.2
Maheswaranathan, N.3
Ganguli, S.4
-
25
-
-
85011070895
-
-
arXiv preprint arXiv:1609.03499
-
van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016a). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.
-
(2016)
Wavenet: A Generative Model for Raw Audio
-
-
Van Den Oord, A.1
Dieleman, S.2
Zen, H.3
Simonyan, K.4
Vinyals, O.5
Graves, A.6
Kalchbrenner, N.7
Senior, A.8
Kavukcuoglu, K.9
-
27
-
-
85018927054
-
-
arXiv preprint arXiv:1606.05328
-
van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and Kavukcuoglu, K. (2016c). Conditional image generation with pixelcnn decoders. arXiv preprint arXiv:1606.05328.
-
(2016)
Conditional Image Generation with Pixelcnn Decoders
-
-
Van Den Oord, A.1
Kalchbrenner, N.2
Vinyals, O.3
Espeholt, L.4
Graves, A.5
Kavukcuoglu, K.6
-
30
-
-
77956001004
-
Deconvolutional networks
-
IEEE
-
Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. (2010). Deconvolutional networks. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2528-2535. IEEE.
-
(2010)
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
, pp. 2528-2535
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
|