메뉴 건너뛰기




Volumn 34, Issue 8, 2018, Pages 1381-1388

An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CHEMISTRY; DATA MINING; MEDICAL RESEARCH; NOMENCLATURE; PROCEDURES;

EID: 85046730956     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx761     Document Type: Article
Times cited : (375)

References (36)
  • 2
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra, J. and Bengio, Y. (2012) Random search for hyper-parameter optimization. J. Mach. Learn. Res., 13, 281-305.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 3
    • 85021662061 scopus 로고    scopus 로고
    • Phonologically aware neural model for named entity recognition in low resource transfer settings
    • Bharadwaj, A. et al. (2016) Phonologically aware neural model for named entity recognition in low resource transfer settings. EMNLP, 2016, 1462-1472.
    • (2016) EMNLP , vol.2016 , pp. 1462-1472
    • Bharadwaj, A.1
  • 4
    • 33847215211 scopus 로고
    • Stochastic gradient learning in neural networks
    • Bottou, L. (1991) Stochastic gradient learning in neural networks. In: Proceedings of Neuro-Nimes, p. 91.
    • (1991) Proceedings of Neuro-Nimes , pp. 91
    • Bottou, L.1
  • 6
    • 80053558787 scopus 로고    scopus 로고
    • Natural language processing (almost) from scratch
    • Collobert, R. et al. (2011) Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12, 2493-2537.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2493-2537
    • Collobert, R.1
  • 7
    • 58149200928 scopus 로고    scopus 로고
    • Comparative Toxicogenomics Database: A knowledgebase and discovery tool for chemical-gene-disease networks
    • Davis, A.P. et al. (2009) Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical-gene-disease networks. Nucleic Acids Res., 37, D786-D792.
    • (2009) Nucleic Acids Res. , vol.37 , pp. D786-D792
    • Davis, A.P.1
  • 8
    • 38549127678 scopus 로고    scopus 로고
    • ChEBI: A database and ontology for chemical entities of biological interest
    • Degtyarenko, K. et al. (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res., 36, D344-D350.
    • (2008) Nucleic Acids Res. , vol.36 , pp. D344-D350
    • Degtyarenko, K.1
  • 9
    • 84901001907 scopus 로고    scopus 로고
    • Chemical named entities recognition: A review on approaches and applications
    • Eltyeb, S. and Salim, N. (2014) Chemical named entities recognition: a review on approaches and applications. J. Cheminf., 6, 17.
    • (2014) J. Cheminf. , vol.6 , pp. 17
    • Eltyeb, S.1    Salim, N.2
  • 11
    • 70449387056 scopus 로고    scopus 로고
    • A dictionary to identify small molecules and drugs in free text
    • Hettne, K.M. et al. (2009) A dictionary to identify small molecules and drugs in free text. Bioinformatics, 25, 2983-2991.
    • (2009) Bioinformatics , vol.25 , pp. 2983-2991
    • Hettne, K.M.1
  • 14
    • 84925683427 scopus 로고    scopus 로고
    • CHEMDNER: The drugs and chemical names extraction challenge
    • Krallinger, M. et al. (2015) CHEMDNER: The drugs and chemical names extraction challenge. J. Cheminform., 7, S1.
    • (2015) J. Cheminform. , vol.7 , pp. S1
    • Krallinger, M.1
  • 15
    • 85012088618 scopus 로고    scopus 로고
    • How to generate a good word embedding
    • Lai, S. et al. (2016) How to generate a good word embedding. IEEE Intell. Syst., 31, 5-14.
    • (2016) IEEE Intell. Syst. , vol.31 , pp. 5-14
    • Lai, S.1
  • 16
    • 84959872385 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for text classification
    • Lai, S. et al. (2015) Recurrent convolutional neural networks for text classification. AAAI, 2267-2273.
    • (2015) AAAI , pp. 2267-2273
    • Lai, S.1
  • 17
    • 84994130883 scopus 로고    scopus 로고
    • Neural architectures for named entity recognition
    • Lample, G. et al. (2016) Neural architectures for named entity recognition. In: Proceedings of NAACL-HLT. pp. 260-270.
    • (2016) Proceedings of NAACL-HLT , pp. 260-270
    • Lample, G.1
  • 18
    • 84992220733 scopus 로고    scopus 로고
    • TaggerOne: Joint named entity recognition and normalization with semi-Markov Models
    • Leaman, R. and Lu, Z. (2016) TaggerOne: joint named entity recognition and normalization with semi-Markov Models. Bioinformatics, 32, 2839-2846.
    • (2016) Bioinformatics , vol.32 , pp. 2839-2846
    • Leaman, R.1    Lu, Z.2
  • 19
    • 84925619870 scopus 로고    scopus 로고
    • TmChem: A high performance approach for chemical named entity recognition and normalization
    • Leaman, R. et al. (2015) tmChem: a high performance approach for chemical named entity recognition and normalization. Journal of Cheminformatics, 7.
    • (2015) Journal of Cheminformatics , vol.7
    • Leaman, R.1
  • 21
    • 85013335148 scopus 로고    scopus 로고
    • BioCreative v CDR task corpus: A resource for chemical disease relation extraction
    • Li, J. et al. (2016) BioCreative V CDR task corpus: a resource for chemical disease relation extraction. Database, 2016, 1-10.
    • (2016) Database , vol.2016 , pp. 1-10
    • Li, J.1
  • 22
    • 84952313857 scopus 로고    scopus 로고
    • Drug name recognition: Approaches and resources
    • Liu, S. et al. (2015) Drug name recognition: approaches and resources. Information, 6, 790-810.
    • (2015) Information , vol.6 , pp. 790-810
    • Liu, S.1
  • 23
    • 84925635743 scopus 로고    scopus 로고
    • CHEMDNER system with mixed conditional random fields and multi-scale word clustering
    • Lu, Y. et al. (2015) CHEMDNER system with mixed conditional random fields and multi-scale word clustering. J. Cheminf., 7, S4.
    • (2015) J. Cheminf. , vol.7 , pp. S4
    • Lu, Y.1
  • 24
    • 85011928654 scopus 로고    scopus 로고
    • End-to-end sequence labeling via bi-directional lstm-cnns-crf
    • Ma, X. and Hovy, E. (2016) End-to-end sequence labeling via bi-directional lstm-cnns-crf. In: Proceedings of ACL, pp. 1064-1074.
    • (2016) Proceedings of ACL , pp. 1064-1074
    • Ma, X.1    Hovy, E.2
  • 25
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Mikolov, T. et al. (2013) Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst., 2, 3111-3119.
    • (2013) Adv. Neural Inf. Process. Syst. , vol.2 , pp. 3111-3119
    • Mikolov, T.1
  • 26
    • 84937959846 scopus 로고    scopus 로고
    • Recurrent models of visual attention
    • Mnih, V. et al. (2014) Recurrent models of visual attention. Adv. Neural Inf. Process. Syst., 2, 2204-2212.
    • (2014) Adv. Neural Inf. Process. Syst. , vol.2 , pp. 2204-2212
    • Mnih, V.1
  • 29
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • Prechelt, L. (1998) Automatic early stopping using cross validation: quantifying the criteria. Neural Netw., 11, 761-767.
    • (1998) Neural Netw. , vol.11 , pp. 761-767
    • Prechelt, L.1
  • 32
    • 84863506694 scopus 로고    scopus 로고
    • ChemSpot: A hybrid system for chemical named entity recognition
    • Rocktäschel, T. et al. (2012) ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics, 28, 1633-1640.
    • (2012) Bioinformatics , vol.28 , pp. 1633-1640
    • Rocktäschel, T.1
  • 33
    • 85011961552 scopus 로고    scopus 로고
    • Recurrent neural network models for disease name recognition using domain invariant features
    • Sahu, S.K. and Anand, A. (2016) Recurrent neural network models for disease name recognition using domain invariant features. In: Proceedings of ACL, pp.2216-2225
    • (2016) Proceedings of ACL , pp. 2216-2225
    • Sahu, S.K.1    Anand, A.2
  • 35
    • 84897374043 scopus 로고    scopus 로고
    • CheNER: Chemical named entity recognizer
    • Usié, A. et al. (2014) CheNER: chemical named entity recognizer. Bioinformatics, 30, 1039-1040.
    • (2014) Bioinformatics , vol.30 , pp. 1039-1040
    • Usié, A.1
  • 36
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
    • Viterbi, A. (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory, 13, 260-269.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , pp. 260-269
    • Viterbi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.