메뉴 건너뛰기




Volumn 3, Issue January, 2014, Pages 2204-2212

Recurrent models of visual attention

Author keywords

[No Author keywords available]

Indexed keywords

BEHAVIORAL RESEARCH; CONVOLUTION; INFORMATION SCIENCE; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS; REINFORCEMENT LEARNING; VIDEO SIGNAL PROCESSING;

EID: 84937959846     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3668)

References (26)
  • 2
    • 84877745180 scopus 로고    scopus 로고
    • Searching for objects driven by context
    • Bogdan Alexe, Nicolas Heess, Yee Whye Teh, and Vittorio Ferrari. Searching for objects driven by context. In NIPS, 2012.
    • (2012) NIPS
    • Alexe, B.1    Heess, N.2    Teh, Y.W.3    Ferrari, V.4
  • 4
    • 70450161413 scopus 로고    scopus 로고
    • Optimal scanning for faster object detection
    • Nicholas J. Butko and Javier R. Movellan. Optimal scanning for faster object detection. In CVPR, 2009.
    • (2009) CVPR
    • Butko, N.J.1    Movellan, J.R.2
  • 6
    • 84867478719 scopus 로고    scopus 로고
    • Learning where to attend with deep architectures for image tracking
    • Misha Denil, Loris Bazzani, Hugo Larochelle, and Nando de Freitas. Learning where to attend with deep architectures for image tracking. Neural Computation, 24(8):2151-2184, 2012.
    • (2012) Neural Computation , vol.24 , Issue.8 , pp. 2151-2184
    • Denil, M.1    Bazzani, L.2    Larochelle, H.3    De Freitas, N.4
  • 7
    • 77955999401 scopus 로고    scopus 로고
    • Cascade object detection with de-formable part models
    • Pedro F. Felzenszwalb, Ross B. Girshick, and David A. McAllester. Cascade object detection with de-formable part models. In CVPR, 2010.
    • (2010) CVPR
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.A.3
  • 8
    • 84913561844 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/1311.2524, 2013.
    • (2013) CoRR, Abs/1311.2524
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 9
    • 17444385937 scopus 로고    scopus 로고
    • Eye movements in natural behavior
    • Mary Hayhoe and Dana Ballard. Eye movements in natural behavior. Trends in Cognitive Sciences, 9(4):188-194, 2005.
    • (2005) Trends in Cognitive Sciences , vol.9 , Issue.4 , pp. 188-194
    • Hayhoe, M.1    Ballard, D.2
  • 13
    • 51949099868 scopus 로고    scopus 로고
    • Beyond sliding windows: Object localization by efficient subwindow search
    • Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann. Beyond sliding windows: Object localization by efficient subwindow search. In CVPR, 2008.
    • (2008) CVPR
    • Lampert, C.H.1    Blaschko, M.B.2    Hofmann, T.3
  • 14
    • 85162061663 scopus 로고    scopus 로고
    • Learning to combine foveal glimpses with a third-order boltzmann machine
    • Hugo Larochelle and Geoffrey E. Hinton. Learning to combine foveal glimpses with a third-order boltzmann machine. In NIPS, 2010.
    • (2010) NIPS
    • Larochelle, H.1    Hinton, G.E.2
  • 15
    • 84899020371 scopus 로고    scopus 로고
    • Action from still image dataset and inverse optimal control to learn task specific visual scanpaths
    • Stefan Mathe and Cristian Sminchisescu. Action from still image dataset and inverse optimal control to learn task specific visual scanpaths. In NIPS, 2013.
    • (2013) NIPS
    • Mathe, S.1    Sminchisescu, C.2
  • 16
    • 70449909870 scopus 로고    scopus 로고
    • Q-learning of sequential attention for visual object recognition from informative local descriptors
    • Lucas Paletta, Gerald Fritz, and Christin Seifert. Q-learning of sequential attention for visual object recognition from informative local descriptors. In CVPR, 2005.
    • (2005) CVPR
    • Paletta, L.1    Fritz, G.2    Seifert, C.3
  • 18
    • 0034096923 scopus 로고    scopus 로고
    • The dynamic representation of scenes
    • Ronald A. Rensink. The dynamic representation of scenes. Visual Cognition, 7(1-3):17-42, 2000.
    • (2000) Visual Cognition , vol.7 , Issue.1-3 , pp. 17-42
    • Rensink, R.A.1
  • 19
    • 84906486689 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. CoRR, abs/1312.6229, 2013.
    • (2013) CoRR, Abs/1312.6229
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 20
  • 21
    • 84898939480 scopus 로고    scopus 로고
    • Policy gradient methods for reinforcement learning with function approximation
    • MIT Press
    • Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In NIPS, pages 1057-1063. MIT Press, 2000.
    • (2000) NIPS , pp. 1057-1063
    • Sutton, R.S.1    Mcallester, D.2    Singh, S.3    Mansour, Y.4
  • 22
    • 33750341577 scopus 로고    scopus 로고
    • Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search
    • Antonio Torralba, Aude Oliva, Monica S Castelhano, and John M Henderson. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev, pages 766-786, 2006.
    • (2006) Psychol Rev , pp. 766-786
    • Torralba, A.1    Oliva, A.2    Castelhano, M.S.3    Henderson, J.M.4
  • 24
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • Paul A. Viola and Michael J. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001.
    • (2001) CVPR
    • Viola, P.A.1    Jones, M.J.2
  • 25
    • 84860606811 scopus 로고    scopus 로고
    • Solving deep memory pomdps with recurrent policy gradients
    • Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmidhuber. Solving deep memory pomdps with recurrent policy gradients. In ICANN. 2007.
    • (2007) ICANN
    • Wierstra, D.1    Foerster, A.2    Peters, J.3    Schmidhuber, J.4
  • 26
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • R.J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3):229-256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.