메뉴 건너뛰기




Volumn 32, Issue 18, 2016, Pages 2839-2846

TaggerOne: Joint named entity recognition and normalization with semi-Markov Models

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATED PATTERN RECOGNITION; BIOLOGY; DATA MINING; DISEASES; FORECASTING; INFORMATION RETRIEVAL; KNOWLEDGE BASE; MACHINE LEARNING; NOMENCLATURE; SEMANTICS; SOFTWARE;

EID: 84992220733     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw343     Document Type: Article
Times cited : (283)

References (48)
  • 1
    • 77950950348 scopus 로고    scopus 로고
    • Support vector machine learning for independent and structured output spaces
    • Bakir, G. et al. (eds). The MIT Press, Cambridge, Massachusetts, USA
    • Altun, Y. et al. (2007) Support vector machine learning for independent and structured output spaces. In: Bakir, G. et al. (eds) Predicting Structured Data. The MIT Press, Cambridge, Massachusetts, USA.
    • (2007) Predicting Structured Data
    • Altun, Y.1
  • 2
    • 77953652201 scopus 로고    scopus 로고
    • Learning to rank with (a lot of) word features
    • Bai, B. et al. (2010) Learning to rank with (a lot of) word features. Inf. Retrieval, 13, 291-314.
    • (2010) Inf. Retrieval , vol.13 , pp. 291-314
    • Bai, B.1
  • 3
    • 84907588683 scopus 로고    scopus 로고
    • Quantifying the impact and extent of undocumented biomedical synonymy
    • Blair, D.R. et al. (2014) Quantifying the impact and extent of undocumented biomedical synonymy. PLoS Comput. Biol., 10, e1003799.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003799
    • Blair, D.R.1
  • 4
    • 84884469671 scopus 로고    scopus 로고
    • A modular framework for biomedical concept recognition
    • Campos, D. et al. (2013) A modular framework for biomedical concept recognition. BMC Bioinformatics, 14, 281.
    • (2013) BMC Bioinformatics , vol.14 , pp. 281
    • Campos, D.1
  • 5
    • 85121305390 scopus 로고    scopus 로고
    • Disease mention recognition with specific features
    • Uppsala, Sweden
    • Chowdhury, F.M. and Lavelli, A. (2010) Disease mention recognition with specific features. Bio NLP Workshop. Uppsala, Sweden, pp. 83-90.
    • (2010) Bio NLP Workshop , pp. 83-90
    • Chowdhury, F.M.1    Lavelli, A.2
  • 6
    • 12244290581 scopus 로고    scopus 로고
    • Exploiting dictionaries in named entity extraction: Combining semi-markov extractions processes and data integration methods
    • ACM, Seattle, Washington, USA
    • Cohen, W.W. and Sarawagi, S. (2004) Exploiting Dictionaries in Named Entity Extraction: Combining Semi-Markov Extractions Processes and Data Integration Methods. 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. ACM, Seattle, Washington, USA, pp. 89-98.
    • (2004) 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining , pp. 89-98
    • Cohen, W.W.1    Sarawagi, S.2
  • 7
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer, K. and Singer, Y. (2001) On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res., 2, 265-292.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 8
    • 0141496132 scopus 로고    scopus 로고
    • Ultraconservative online algorithms for multiclass problems
    • Crammer, K. and Singer, Y. (2003) Ultraconservative online algorithms for multiclass problems. J. Mach. Learn. Res., 3, 951-991.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 951-991
    • Crammer, K.1    Singer, Y.2
  • 9
    • 84944050080 scopus 로고    scopus 로고
    • Sieve-based entity linking for the biomedical domain
    • Beijing, China
    • D'Souza, J. and Ng, V. (2015) Sieve-Based Entity Linking for the Biomedical Domain. In: 53rd ACL and 7th IJCNLP. Beijing, China, pp. 297-302.
    • (2015) 53rd ACL and 7th IJCNLP , pp. 297-302
    • D'Souza, J.1    Ng, V.2
  • 10
    • 84895437465 scopus 로고    scopus 로고
    • NCBI disease corpus: A resource for disease name recognition and concept normalization
    • Doǧan, R.I. et al. (2014) NCBI disease corpus: A resource for disease name recognition and concept normalization. J. Biomed. Inf., 47, 1-10.
    • (2014) J. Biomed. Inf. , vol.47 , pp. 1-10
    • Doǧan, R.I.1
  • 11
    • 84943800291 scopus 로고    scopus 로고
    • A joint model for entity analysis: Coreference, typing and linking
    • Durrett, G. and Klein, D. (2014) A joint model for entity analysis: coreference, typing and linking. Trans. Assoc. Comput. Linguist., 2, 477-490.
    • (2014) Trans. Assoc. Comput. Linguist. , vol.2 , pp. 477-490
    • Durrett, G.1    Klein, D.2
  • 12
    • 84901001907 scopus 로고    scopus 로고
    • Chemical named entities recognition: A review on approaches and applications
    • Eltyeb, S. and Salim, N. (2014) Chemical named entities recognition: a review on approaches and applications. J. Cheminf., 6, 17.
    • (2014) J. Cheminf. , vol.6 , pp. 17
    • Eltyeb, S.1    Salim, N.2
  • 16
    • 33947304181 scopus 로고    scopus 로고
    • Overview of BioCreAtIvE: Critical assessment of information extraction for biology
    • Hirschman, L. et al. (2005) Overview of BioCreAtIvE: critical assessment of information extraction for biology. BMC Bioinformatics, 6, S1.
    • (2005) BMC Bioinformatics , vol.6 , pp. S1
    • Hirschman, L.1
  • 17
    • 80053974142 scopus 로고    scopus 로고
    • OSCAR4: A flexible architecture for chemical textmining
    • Jessop, D.M. et al. (2011) OSCAR4: a flexible architecture for chemical textmining. J. Cheminf., 3, 41.
    • (2011) J. Cheminf. , vol.3 , pp. 41
    • Jessop, D.M.1
  • 18
    • 44649165797 scopus 로고    scopus 로고
    • Assessment of disease named entity recognition on a corpus of annotated sentences
    • Jimeno, A. et al. (2008) Assessment of disease named entity recognition on a corpus of annotated sentences. BMC Bioinformatics, 9, S3.
    • (2008) BMC Bioinformatics , vol.9 , pp. S3
    • Jimeno, A.1
  • 19
    • 84882760954 scopus 로고    scopus 로고
    • Using rule-based natural language processing to improve disease normalization in biomedical text
    • Kang, N. et al. (2012) Using rule-based natural language processing to improve disease normalization in biomedical text. J. Am. Med. Inf. Assoc., 20, 876-881.
    • (2012) J. Am. Med. Inf. Assoc. , vol.20 , pp. 876-881
    • Kang, N.1
  • 20
    • 85104042765 scopus 로고    scopus 로고
    • Overview of BioNLP'09 shared task on event extraction
    • 1-9
    • Kim, J.D. et al. (2009) Overview of BioNLP'09 shared task on event extraction. Bio NLP Workshop, pp. 1-9.
    • (2009) Bio NLP Workshop
    • Kim, J.D.1
  • 21
    • 46249113462 scopus 로고    scopus 로고
    • Detection of IUPAC and IUPAC-like chemical names
    • Klinger, R. et al. (2008) Detection of IUPAC and IUPAC-like chemical names. Bioinformatics, 24, i268-i276.
    • (2008) Bioinformatics , vol.24 , pp. i268-i276
    • Klinger, R.1
  • 23
    • 84925683427 scopus 로고    scopus 로고
    • CHEMDNER: The drugs and chemical names extraction challenge
    • Krallinger, M. et al. (2015a) CHEMDNER: The drugs and chemical names extraction challenge. J. Cheminf., 7, S1.
    • (2015) J. Cheminf. , vol.7 , pp. S1
    • Krallinger, M.1
  • 25
    • 84992226492 scopus 로고    scopus 로고
    • The UET-CAM System in the BioCreAtIvE v CDR Task
    • Seville, Spain
    • Le, H.-Q. et al. (2015) The UET-CAM System in the BioCreAtIvE V CDR Task. Bio Creative Workshop. Seville, Spain, pp. 208-213.
    • (2015) Bio Creative Workshop , pp. 208-213
    • Le, H.-Q.1
  • 26
    • 84890064920 scopus 로고    scopus 로고
    • DNorm: Disease name normalization with pairwise learning-to-rank
    • Leaman, R. et al. (2013) DNorm: Disease name normalization with pairwise learning-to-rank. Bioinformatics, 29, 2909-2917.
    • (2013) Bioinformatics , vol.29 , pp. 2909-2917
    • Leaman, R.1
  • 27
    • 40549140499 scopus 로고    scopus 로고
    • BANNER: An executable survey of advances in biomedical named entity recognition
    • Leaman, R. and Gonzalez, G. (2008) BANNER: an executable survey of advances in biomedical named entity recognition. Pac. Symp. Biocomput., 652-663.
    • (2008) Pac. Symp. Biocomput. , pp. 652-663
    • Leaman, R.1    Gonzalez, G.2
  • 28
    • 79955806959 scopus 로고    scopus 로고
    • Enabling recognition of diseases in biomedical text with machine learning: Corpus and benchmark
    • Leaman, R. et al. (2009) Enabling recognition of diseases in biomedical text with machine learning: corpus and benchmark. Proc Symp on Languages in Biology and Medicine, 13, pp. 82-89.
    • (2009) Proc Symp on Languages in Biology and Medicine , vol.13 , pp. 82-89
    • Leaman, R.1
  • 29
    • 84949496799 scopus 로고    scopus 로고
    • Challenges in clinical natural language processing for automated disorder normalization
    • Leaman, R. et al. (2015a) Challenges in clinical natural language processing for automated disorder normalization. J. Biomed. Inf, 57, pp. 28-37.
    • (2015) J. Biomed. Inf , vol.57 , pp. 28-37
    • Leaman, R.1
  • 30
    • 84925619870 scopus 로고    scopus 로고
    • TmChem: A high performance approach for chemical named entity recognition and normalization
    • Leaman, R. et al. (2015b) tmChem: a high performance approach for chemical named entity recognition and normalization. J. Cheminf., 7, S3.
    • (2015) J. Cheminf. , vol.7 , pp. S3
    • Leaman, R.1
  • 31
    • 84992215453 scopus 로고    scopus 로고
    • An enhanced CRF-based system for disease name entity recognition and normalization on biocreative v DNER task
    • Sevilla, Spain
    • Lee, H.C. et al. (2015) An Enhanced CRF-Based System for Disease Name Entity Recognition and Normalization on BioCreative V DNER Task. Proc Bio Creative Workshop. Sevilla, Spain, pp. 226-233.
    • (2015) Proc Bio Creative Workshop , pp. 226-233
    • Lee, H.C.1
  • 32
    • 84964886795 scopus 로고    scopus 로고
    • Annotating chemicals, diseases and their interactions in biomedical literature
    • Seville, Spain
    • Li, J. et al. (2015) Annotating chemicals, diseases and their interactions in biomedical literature. Proc Bio Creative Workshop. Seville, Spain, pp. 173-182.
    • (2015) Proc Bio Creative Workshop , pp. 173-182
    • Li, J.1
  • 33
    • 41349103793 scopus 로고    scopus 로고
    • Overview of BioCreative II gene normalization
    • Morgan, A.A. et al. (2008) Overview of BioCreative II gene normalization. Genome Biol., 9, S3.
    • (2008) Genome Biol. , vol.9 , pp. S3
    • Morgan, A.A.1
  • 35
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • Porter, M.F. (1980) An algorithm for suffix stripping. Program, 14, 130-137.
    • (1980) Program , vol.14 , pp. 130-137
    • Porter, M.F.1
  • 36
    • 84929512461 scopus 로고    scopus 로고
    • Evaluating the state of the art in disorder recognition and normalization of the clinical narrative
    • Pradhan, S. et al. (2015) Evaluating the state of the art in disorder recognition and normalization of the clinical narrative. J. Am. Med. Inf. Assoc., 22, 143-154.
    • (2015) J. Am. Med. Inf. Assoc. , vol.22 , pp. 143-154
    • Pradhan, S.1
  • 37
    • 84897901954 scopus 로고    scopus 로고
    • Anatomical entity mention recognition at literature scale
    • Pyysalo, S. and Ananiadou, S. (2014) Anatomical entity mention recognition at literature scale. Bioinformatics, 30, 868-875.
    • (2014) Bioinformatics , vol.30 , pp. 868-875
    • Pyysalo, S.1    Ananiadou, S.2
  • 39
    • 84863506694 scopus 로고    scopus 로고
    • Chem spot: A hybrid system for chemical named entity recognition
    • Rocktaschel, T. et al. (2012) Chem Spot: a hybrid system for chemical named entity recognition. Bioinformatics, 28, 1633-1640.
    • (2012) Bioinformatics , vol.28 , pp. 1633-1640
    • Rocktaschel, T.1
  • 40
    • 55249111767 scopus 로고    scopus 로고
    • Abbreviation definition identification based on automatic precision estimates
    • Sohn, S. et al. (2008) Abbreviation definition identification based on automatic precision estimates. BMC Bioinformatics, 9, 402.
    • (2008) BMC Bioinformatics , vol.9 , pp. 402
    • Sohn, S.1
  • 41
    • 84949497303 scopus 로고    scopus 로고
    • PKDE4J: Entity and relation extraction for public knowledge discovery
    • Song, M. et al. (2015) PKDE4J: Entity and relation extraction for public knowledge discovery. J. Biomed. Inf, 57, 320-332.
    • (2015) J. Biomed. Inf , vol.57 , pp. 320-332
    • Song, M.1
  • 42
    • 84898948585 scopus 로고    scopus 로고
    • Max-margin Markov networks
    • Thrun, S. et al. (eds) MIT Press, Cambridge, Massachusetts, USA
    • Taskar, B. et al. (2004) Max-margin Markov networks. In: Thrun, S. et al. (eds) Adv Neural Inf Process Syst. MIT Press, Cambridge, Massachusetts, USA.
    • (2004) Adv Neural Inf Process Syst.
    • Taskar, B.1
  • 43
    • 35748966977 scopus 로고    scopus 로고
    • Learning string similarity measures for gene/protein name dictionary look-up using logistic regression
    • Tsuruoka, Y. et al. (2007) Learning string similarity measures for gene/protein name dictionary look-up using logistic regression. Bioinformatics, 23, 2768-2774.
    • (2007) Bioinformatics , vol.23 , pp. 2768-2774
    • Tsuruoka, Y.1
  • 44
    • 85121124155 scopus 로고    scopus 로고
    • Automatic acquisition of huge training data for biomedical named entity recognition
    • Portland, Oregon
    • Usami, Y. et al. (2011) Automatic acquisition of huge training data for biomedical named entity recognition. Bio NLP Workshop. Portland, Oregon, pp. 65-73.
    • (2011) Bio NLP Workshop , pp. 65-73
    • Usami, Y.1
  • 45
    • 79960604459 scopus 로고    scopus 로고
    • Text mining for drugs and chemical compounds: Methods, tools and applications
    • Vazquez, M. et al. (2011) Text mining for drugs and chemical compounds: methods, tools and applications. Mol. Inf., 30, 506-519.
    • (2011) Mol. Inf. , vol.30 , pp. 506-519
    • Vazquez, M.1
  • 46
    • 84941136493 scopus 로고    scopus 로고
    • GNorm plus: An integrative approach for tagging genes, gene families, and protein domains
    • Wei, C.H. et al. (2015a) GNorm Plus: an integrative approach for tagging genes, gene families, and protein domains. Bio Med. Res. Int., 2015, 7.
    • (2015) Bio Med. Res. Int. , vol.2015 , pp. 7
    • Wei, C.H.1
  • 47
    • 84938325545 scopus 로고    scopus 로고
    • Sim concept: A hybrid approach for simplifying composite named entities in biomedical text
    • Wei, C.H. et al. (2015b) Sim Concept: a hybrid approach for simplifying composite named entities in biomedical text. IEEE J. Biomed. Health Inf., 19, 1385-1391.
    • (2015) IEEE J. Biomed. Health Inf. , vol.19 , pp. 1385-1391
    • Wei, C.H.1
  • 48
    • 84949317410 scopus 로고    scopus 로고
    • Overview of the bio creative v chemical disease relation (CDR) task
    • Wei, C.H. et al. (2015c) Overview of the BioCreative V Chemical Disease Relation (CDR) Task. Bio Creative Workshop. pp. 154-166.
    • (2015) Bio Creative Workshop , pp. 154-166
    • Wei, C.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.