메뉴 건너뛰기




Volumn 7, Issue , 2015, Pages

CHEMDNER: The drugs and chemical names extraction challenge

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84925683427     PISSN: None     EISSN: 17582946     Source Type: Journal    
DOI: 10.1186/1758-2946-7-S1-S1     Document Type: Article
Times cited : (224)

References (60)
  • 1
    • 79960604459 scopus 로고    scopus 로고
    • Text mining for drugs and chemical compounds: Methods, tools and applications
    • Vazquez M, Krallinger M, Leitner F, Valencia A: Text mining for drugs and chemical compounds: methods, tools and applications. Molecular Informatics 2011, 30(6-7):506-519.
    • (2011) Molecular Informatics , vol.30 , Issue.6-7 , pp. 506-519
    • Vazquez, M.1    Krallinger, M.2    Leitner, F.3    Valencia, A.4
  • 2
    • 31144432293 scopus 로고    scopus 로고
    • Literature mining for the biologist: From information retrieval to biological discovery
    • Jensen LJ, Saric J, Bork P: Literature mining for the biologist: from information retrieval to biological discovery. Nature reviews genetics 2006, 7(2):119-129.
    • (2006) Nature Reviews Genetics , vol.7 , Issue.2 , pp. 119-129
    • Jensen, L.J.1    Saric, J.2    Bork, P.3
  • 7
    • 51049110331 scopus 로고    scopus 로고
    • Linking genes to literature: Text mining, information extraction, and retrieval applications for biology
    • Krallinger M, Valencia A, Hirschman L: Linking genes to literature: text mining, information extraction, and retrieval applications for biology. Genome Biol 2008, 9(Suppl 2):8.
    • (2008) Genome Biol , vol.9 , pp. 8
    • Krallinger, M.1    Valencia, A.2    Hirschman, L.3
  • 10
    • 47749122510 scopus 로고    scopus 로고
    • A survey of named entity recognition and classification
    • Nadeau D, Sekine S: A survey of named entity recognition and classification. Lingvisticae Investigationes 2007, 30(1):3-26.
    • (2007) Lingvisticae Investigationes , vol.30 , Issue.1 , pp. 3-26
    • Nadeau, D.1    Sekine, S.2
  • 11
    • 30744459862 scopus 로고    scopus 로고
    • What makes a gene name? Named entity recognition in the biomedical literature
    • Leser U, Hakenberg J: What makes a gene name? named entity recognition in the biomedical literature. Briefings in Bioinformatics 2005, 6(4):357-369.
    • (2005) Briefings in Bioinformatics , vol.6 , Issue.4 , pp. 357-369
    • Leser, U.1    Hakenberg, J.2
  • 14
    • 77949431037 scopus 로고    scopus 로고
    • Linnaeus: A species name identification system for biomedical literature
    • Gerner M, Nenadic G, Bergman CM: Linnaeus: a species name identification system for biomedical literature. BMC bioinformatics 2010, 11(1):85.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 85
    • Gerner, M.1    Nenadic, G.2    Bergman, C.M.3
  • 19
    • 78651413290 scopus 로고    scopus 로고
    • Bethesda, MD: The Lister Hill National Center for Biomedical Communications
    • He Y, Kayaalp M: A comparison of 13 tokenizers on medline. Bethesda, MD: The Lister Hill National Center for Biomedical Communications; 2006.
    • (2006) A Comparison of 13 Tokenizers on Medline
    • He, Y.1    Kayaalp, M.2
  • 20
    • 79958107612 scopus 로고    scopus 로고
    • Building a biomedical tokenizer using the token lattice design pattern and the adapted Viterbi algorithm
    • Barrett N, Weber-Jahnke J: Building a biomedical tokenizer using the token lattice design pattern and the adapted Viterbi algorithm. BMC Bioinformatics 2011, 12(Suppl 3):1.
    • (2011) BMC Bioinformatics , vol.12 , pp. 1
    • Barrett, N.1    Weber-Jahnke, J.2
  • 22
    • 84925619870 scopus 로고    scopus 로고
    • TmChem: A high performance approach for chemical named entity recognition and normalization
    • Leaman R, Wei CH, Lu Z: tmChem: a high performance approach for chemical named entity recognition and normalization. J Cheminform 2014, 7(Suppl 1):S3.
    • (2014) J Cheminform , vol.7 , pp. S3
    • Leaman, R.1    Wei, C.H.2    Lu, Z.3
  • 23
    • 84946133355 scopus 로고    scopus 로고
    • team 173, C
    • team 173, C. [http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmChem/].
  • 24
    • 84900991124 scopus 로고    scopus 로고
    • Dbchem: A database query based solution for the chemical compound and drug name recognition task
    • Ata C, Can T: Dbchem: A database query based solution for the chemical compound and drug name recognition task. BioCreative Challenge Evaluation Workshop 2013, 2:42.
    • (2013) BioCreative Challenge Evaluation Workshop , vol.2 , pp. 42
    • Ata, C.1    Can, T.2
  • 25
    • 84946140123 scopus 로고    scopus 로고
    • team 177, C
    • team 177, C. [http://www.ceng.metu.edu.tr/~e1347145].
  • 26
    • 84946143189 scopus 로고    scopus 로고
    • LeadMine: A grammar and dictionary driven approach to entity recognition
    • Lowe DM, Sayle R: LeadMine: A grammar and dictionary driven approach to entity recognition. J Cheminform 2014, 7(Suppl 1):S5.
    • (2014) J Cheminform , vol.7 , pp. S5
    • Lowe, D.M.1    Sayle, R.2
  • 27
    • 84946106323 scopus 로고    scopus 로고
    • team 179, C
    • team 179, C. [http://nextmovesoftware.com/leadmine.html].
  • 28
    • 84946131442 scopus 로고    scopus 로고
    • Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics
    • Batista-Navarro R, Rak R, Ananiadou S: Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics. J Cheminform 2014, 7(Suppl 1):S6.
    • (2014) J Cheminform , vol.7 , pp. S6
    • Batista-Navarro, R.1    Rak, R.2    Ananiadou, S.3
  • 29
    • 84946133836 scopus 로고    scopus 로고
    • Adapting cocoa, a multi-class entity detector, for the chemdner task of biocreatIVe IV
    • Ramanan S, Nathan PS: Adapting cocoa, a multi-class entity detector, for the chemdner task of biocreative iv. BioCreative Challenge Evaluation Workshop 2013, 2:60.
    • (2013) BioCreative Challenge Evaluation Workshop , vol.2 , pp. 60
    • Ramanan, S.1    Nathan, P.S.2
  • 30
    • 84946119614 scopus 로고    scopus 로고
    • team 185, C
    • team 185, C. [http://relagent.com/Tech.html].
  • 31
    • 84946205642 scopus 로고    scopus 로고
    • CheNER: A tool for the differential identification of several classes of chemical entities
    • Usie A, Cruz J, Comas J, Solsona F, Alves R: CheNER: A tool for the differential identification of several classes of chemical entities. J Cheminform 2014, 7(Suppl 1):S15.
    • (2014) J Cheminform , vol.7 , pp. S15
    • Usie, A.1    Cruz, J.2    Comas, J.3    Solsona, F.4    Alves, R.5
  • 32
    • 84946145998 scopus 로고    scopus 로고
    • team 191, C
    • team 191, C. [http://metres.udl.cat].
  • 33
    • 84946125762 scopus 로고    scopus 로고
    • A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature
    • Tang B, Feng Y, Wang X, Wu Y, Zhang Y, Jiang M, Wang J, Xu H: A Comparison of Conditional Random Fields and Structured Support Vector Machines for Chemical Entity Recognition in Biomedical Literature. J Cheminform 2014, 7(Suppl 1):S8.
    • (2014) J Cheminform , vol.7 , pp. S8
    • Tang, B.1    Feng, Y.2    Wang, X.3    Wu, Y.4    Zhang, Y.5    Jiang, M.6    Wang, J.7    Xu, H.8
  • 34
    • 84946145155 scopus 로고    scopus 로고
    • Improving chemical entity recognition through h-index based semantic similarity
    • Lamurias A, Ferreira JD, Couto FM: Improving chemical entity recognition through h-index based semantic similarity. J Cheminform 2014.
    • (2014) J Cheminform
    • Lamurias, A.1    Ferreira, J.D.2    Couto, F.M.3
  • 35
    • 84946119940 scopus 로고    scopus 로고
    • team 196, C
    • team 196, C. [http://www.lasige.di.fc.ul.pt/webtools/ice/].
  • 36
    • 84946128141 scopus 로고    scopus 로고
    • A document processing pipeline for annotating chemical entities in scientific documents
    • Campos D, Matos S, Oliveira JL: A document processing pipeline for annotating chemical entities in scientific documents. J Cheminform 2014, 7(Suppl 1):S7.
    • (2014) J Cheminform , vol.7 , pp. S7
    • Campos, D.1    Matos, S.2    Oliveira, J.L.3
  • 37
    • 84946133460 scopus 로고    scopus 로고
    • team 197, C
    • team 197, C. [http://bioinformatics.ua.pt/becas-chemicals/].
  • 39
    • 84946111074 scopus 로고    scopus 로고
    • team 198, C
    • team 198, C. [https://www.informatik.hu-berlin.de/forschung/gebiete/wbi/resources/chemspot/chemspot/].
  • 41
    • 84946139506 scopus 로고    scopus 로고
    • team 199, C
    • team 199, C. [http://www.ocminer.com].
  • 43
    • 84946113430 scopus 로고    scopus 로고
    • team 214, C
    • team 214, C. [http://www.chemaxon.com].
  • 45
    • 84946108674 scopus 로고    scopus 로고
    • Chemical entity extraction using CRF and an ensemble of extractors
    • Khabsa M, Giles CL: Chemical Entity Extraction using CRF and an Ensemble of Extractors. J Cheminform 2014, 7(Suppl 1):S12.
    • (2014) J Cheminform , vol.7 , pp. S12
    • Khabsa, M.1    Giles, C.L.2
  • 46
    • 84946107627 scopus 로고    scopus 로고
    • team 219, C
    • team 219, C. [https://github.com/SeerLabs/chemxseer-tagger].
  • 49
    • 84946122600 scopus 로고    scopus 로고
    • team 225, C
    • team 225, C. [http://labda.inf.uc3m.es/multimedica/CHEMDNER2013team225resources.html].
  • 50
    • 84925635743 scopus 로고    scopus 로고
    • CHEMDNER System with mixed conditional random fields and multi-scale word clustering
    • Lu Y, Yao X, Wei X, Ji D, Liang X: CHEMDNER System with Mixed Conditional Random Fields and Multi-scale Word Clustering. J Cheminform 2014, 7(Suppl 1):S4.
    • (2014) J Cheminform , vol.7 , pp. S4
    • Lu, Y.1    Yao, X.2    Wei, X.3    Ji, D.4    Liang, X.5
  • 51
    • 84946105236 scopus 로고    scopus 로고
    • team 231, C
    • team 231, C. [https://github.com/zuiwufenghua/biocreative-CHEMDNER].
  • 52
    • 84946138625 scopus 로고    scopus 로고
    • Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations
    • Munkhdalai T, Li M, Batsuren K, Park HA, Choi NH, Ryu KH: Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations. J Cheminform 2014, 7(Suppl 1):S9.
    • (2014) J Cheminform , vol.7 , pp. S9
    • Munkhdalai, T.1    Li, M.2    Batsuren, K.3    Park, H.A.4    Choi, N.H.5    Ryu, K.H.6
  • 53
    • 84946139030 scopus 로고    scopus 로고
    • team 233, C
    • team 233, C. [https://bitbucket.org/tsendeemts/banner-chemdner].
  • 55
    • 84946151868 scopus 로고    scopus 로고
    • Token- and constituent-based linear-chain crf with SVM for named entity recognition
    • Zitnik S, Bajec M: Token- and constituent-based linear-chain crf with svm for named entity recognition. BioCreative Challenge Evaluation Workshop 2013, 2:144.
    • (2013) BioCreative Challenge Evaluation Workshop , vol.2 , pp. 144
    • Zitnik, S.1    Bajec, M.2
  • 56
    • 84946133391 scopus 로고    scopus 로고
    • A CRF-based system for recognizing chemical entity mentions (CEMs) in biomedical literature
    • Xu S, An X, Zhu L, Zhang Y, Zhang H: A CRF-Based System for Recognizing Chemical Entity Mentions (CEMs) in Biomedical Literature. J Cheminform 2014, 7(Suppl 1):S11.
    • (2014) J Cheminform , vol.7 , pp. S11
    • Xu, S.1    An, X.2    Zhu, L.3    Zhang, Y.4    Zhang, H.5
  • 57
    • 84946133109 scopus 로고    scopus 로고
    • team 259, C
    • team 259, C. [http://www.sciteminer.org/XuShuo/Demo/CEM].
  • 59
    • 84900991126 scopus 로고    scopus 로고
    • Ensemble approach to extract chemical named entity by using results of multiple cner systems with different characteristic
    • Dieb M: Ensemble approach to extract chemical named entity by using results of multiple cner systems with different characteristic. BioCreative Challenge Evaluation Workshop 2013, 2:162.
    • (2013) BioCreative Challenge Evaluation Workshop , vol.2 , pp. 162
    • Dieb, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.