-
1
-
-
80053495924
-
Word representations: A simple and general method for semi-supervised learning
-
J. Turian, L. Ratinov, and Y. Bengio, "Word Representations: A Simple and General Method for Semi-supervised Learning," Proc. Assoc. Computational Linguistics, 2010, pp. 384-394.
-
(2010)
Proc. Assoc. Computational Linguistics
, pp. 384-394
-
-
Turian, J.1
Ratinov, L.2
Bengio, Y.3
-
2
-
-
84906930943
-
Don't Count, Predict! A Systematic Comparison of Context-Counting vs. Context-Predicting Semantic Vectors
-
M. Baroni, G. Dinu, and G. Kruszewski, "Don't Count, Predict! A Systematic Comparison of Context-Counting vs. Context-Predicting Semantic Vectors," Proc. Assoc. Computational Linguistics, 2014, pp. 238-247.
-
(2014)
Proc. Assoc. Computational Linguistics
, pp. 238-247
-
-
Baroni, M.1
Dinu, G.2
Kruszewski, G.3
-
3
-
-
84961289992
-
GloVe: Global vectors for word representation
-
J. Pennington, R. Socher, and C.D. Manning, "GloVe: Global Vectors for Word Representation," Proc. Empirical Methods Natural Language Processing, 2014, pp. 1532-1543.
-
(2014)
Proc. Empirical Methods Natural Language Processing
, pp. 1532-1543
-
-
Pennington, J.1
Socher, R.2
Manning, C.D.3
-
4
-
-
85083951332
-
Efficient estimation of word representations in vector space
-
T. Mikolov et al., "Efficient Estimation of Word Representations in Vector Space," Proc. Int'l Conf. Learning Representation, 2013; http://arxiv.org/pdf/1301.3781.pdf.
-
(2013)
Proc. Int'l Conf. Learning Representation
-
-
Mikolov, T.1
-
5
-
-
0142166851
-
A neural probabilistic language model
-
Y. Bengio et al., "A Neural Probabilistic Language Model," J. Machine Learning Research, vol. 3, 2003, pp. 1137-1155.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1137-1155
-
-
Bengio, Y.1
-
6
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
R. Collobert and J. Weston, "A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning," Proc. Int'l Conf. Machine Learning, 2008, pp. 160-167.
-
(2008)
Proc. Int'l Conf. Machine Learning
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
7
-
-
80053495924
-
Word representations: A simple and general method for semi-supervised learning
-
J. Turian, L. Ratinov, and Y. Bengio, "Word Representations: A Simple and General Method for Semi-supervised Learning," Proc. Assoc. Computational Linguistics, 2010, pp. 384-394.
-
(2010)
Proc. Assoc. Computational Linguistics
, pp. 384-394
-
-
Turian, J.1
Ratinov, L.2
Bengio, Y.3
-
8
-
-
85083951332
-
Efficient estimation of word representations in vector space
-
arXiv: 1301.3781
-
T. Mikolov et al., "Efficient Estimation of Word Representations in Vector Space," Proc. Int'l Conf. Learning Representation, 2013, arXiv:1301.3781.
-
(2013)
Proc. Int'l Conf. Learning Representation
-
-
Mikolov, T.1
-
9
-
-
34547970628
-
Three new graphical models for statistical language modelling
-
A. Mnih and G. Hinton, "Three New Graphical Models for Statistical Language Modelling," Proc. Int'l Conf. Machine Learning, 2007, pp. 641-648.
-
(2007)
Proc. Int'l Conf. Machine Learning
, pp. 641-648
-
-
Mnih, A.1
Hinton, G.2
-
10
-
-
0000679216
-
Distributional structure
-
Z.S. Harris, "Distributional Structure," Word, vol. 10, no. 2, 1954, pp. 146-162.
-
(1954)
Word
, vol.10
, Issue.2
, pp. 146-162
-
-
Harris, Z.S.1
-
11
-
-
35448938531
-
On the computational basis of learning and cognition: Arguments from LSA
-
T.K. Landauer, "On the Computational Basis of Learning and Cognition: Arguments from LSA," Psychology of Learning and Motivation, vol. 41, 2002, pp. 43-84.
-
(2002)
Psychology of Learning and Motivation
, vol.41
, pp. 43-84
-
-
Landauer, T.K.1
-
12
-
-
84906930943
-
Don't count, predict! A systematic comparison of context-counting vs. Context-predicting semantic vectors
-
M. Baroni, G. Dinu, and G. Kruszewski, "Don't Count, Predict! A Systematic Comparison of Context-Counting vs. Context-Predicting Semantic Vectors," Proc. Assoc. Computational Linguistics, 2014, pp. 238-247.
-
(2014)
Proc. Assoc. Computational Linguistics
, pp. 238-247
-
-
Baroni, M.1
Dinu, G.2
Kruszewski, G.3
-
13
-
-
84961289992
-
GloVe: Global vectors for word representation
-
J. Pennington, R. Socher, and C.D. Manning, "GloVe: Global Vectors for Word Representation," Proc. Empirical Methods in Natural Language Processing, 2014, pp. 1532-1543.
-
(2014)
Proc. Empirical Methods in Natural Language Processing
, pp. 1532-1543
-
-
Pennington, J.1
Socher, R.2
Manning, C.D.3
-
14
-
-
0344029639
-
Placing search in context: The concept revisited
-
L. Finkelstein et al., "Placing Search in Context: The Concept Revisited," ACM Trans. Information Systems, vol. 20, no. 1, 2002, pp. 116-131.
-
(2002)
ACM Trans. Information Systems
, vol.20
, Issue.1
, pp. 116-131
-
-
Finkelstein, L.1
-
15
-
-
0000600219
-
A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
-
T.K. Landauer and S.T. Dumais, "A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge," Psychological Rev., vol. 104, no. 2, 1997, p. 211.
-
(1997)
Psychological Rev.
, vol.104
, Issue.2
, pp. 211
-
-
Landauer, T.K.1
Dumais, S.T.2
-
16
-
-
84859023447
-
Learning word vectors for sentiment analysis
-
A.L. Maas et al., "Learning Word Vectors for Sentiment Analysis," Proc. Assoc. Computational Linguistics, 2011, pp. 142-150.
-
(2011)
Proc. Assoc. Computational Linguistics
, pp. 142-150
-
-
Maas, A.L.1
-
17
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
D. Erhan et al., "Why Does Unsupervised Pre-training Help Deep Learning?," J. Machine Learning Research, vol. 11, 2010, pp. 625-660.
-
(2010)
J. Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
-
18
-
-
84961376850
-
Convolutional neural networks for sentence classification
-
Y. Kim, "Convolutional Neural Networks for Sentence Classification," Proc. Empirical Methods Natural Language Processing, 2014, pp. 1746-1751.
-
(2014)
Proc. Empirical Methods Natural Language Processing
, pp. 1746-1751
-
-
Kim, Y.1
-
19
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank
-
R. Socher et al., "Recursive Deep Models for Semantic Compositionality over a Sentiment Treebank," Proc. Empirical Methods in Natural Language Processing, 2013, pp. 1631-1642.
-
(2013)
Proc. Empirical Methods in Natural Language Processing
, pp. 1631-1642
-
-
Socher, R.1
-
20
-
-
80053558787
-
Natural language processing (almost) from scratch
-
R. Collobert et al., "Natural Language Processing (almost) from Scratch," J. Machine Learning Research, vol. 12, no. 8, 2011, pp. 2493-2537.
-
(2011)
J. Machine Learning Research
, vol.12
, Issue.8
, pp. 2493-2537
-
-
Collobert, R.1
-
22
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov et al., "Distributed Representations of Words and Phrases and Their Compositionality," Proc. Neural Information Processing Systems, 2013, pp. 3111-3119.
-
(2013)
Proc. Neural Information Processing Systems
, pp. 3111-3119
-
-
Mikolov, T.1
|