메뉴 건너뛰기




Volumn , Issue , 2009, Pages 147-155

Design challenges and misconceptions in named entity recognition

Author keywords

[No Author keywords available]

Indexed keywords

DESIGN CHALLENGES; F1 SCORES; FUNDAMENTAL DESIGN; NAMED ENTITY RECOGNITION; NER SYSTEM; PRIOR KNOWLEDGE; PRIOR-KNOWLEDGE;

EID: 84862300668     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/1596374.1596399     Document Type: Conference Paper
Times cited : (1316)

References (32)
  • 1
    • 84859921107 scopus 로고    scopus 로고
    • A high-performance semi-supervised learning method for text chunking
    • R. K. Ando and T. Zhang. 2005. A high-performance semi-supervised learning method for text chunking. In ACL.
    • (2005) ACL
    • Ando, R.K.1    Zhang, T.2
  • 3
    • 69849111670 scopus 로고    scopus 로고
    • Learning a perceptron-based named entity chunker via online recognition feedback
    • X. Carreras, L. Marquez, and L. Padró. 2003. Learning a perceptron-based named entity chunker via online recognition feedback. In CoNLL.
    • (2003) CoNLL
    • Carreras, X.1    Marquez, L.2    Padró, L.3
  • 4
    • 84978165199 scopus 로고    scopus 로고
    • Named entity recognition with a maximum entropy approach
    • H. Chieu and H. T. Ng. 2003. Named entity recognition with a maximum entropy approach. In Proceedings of CoNLL.
    • (2003) Proceedings of CoNLL
    • Chieu, H.1    Ng, H.T.2
  • 5
    • 12244290581 scopus 로고    scopus 로고
    • Exploiting dictionaries in named entity extraction: Combining semi-markov extraction processes and data integration methods
    • W. W. Cohen. 2004. Exploiting dictionaries in named entity extraction: Combining semi-markov extraction processes and data integration methods. In KDD.
    • (2004) KDD
    • Cohen, W.W.1
  • 6
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithm
    • M. Collins. 2002. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In EMNLP.
    • (2002) EMNLP
    • Collins, M.1
  • 7
    • 80053381648 scopus 로고    scopus 로고
    • Finding good sequential model structures using output transformations
    • L. Edward. 2007. Finding good sequential model structures using output transformations. In EMNLP).
    • (2007) EMNLP
    • Edward, L.1
  • 9
    • 84859918687 scopus 로고    scopus 로고
    • Incorporating non-local information into information extraction systems by gibbs sampling
    • J. R. Finkel, T. Grenager, and C. D. Manning. 2005. Incorporating non-local information into information extraction systems by gibbs sampling. In ACL.
    • (2005) ACL
    • Finkel, J.R.1    Grenager, T.2    Manning, C.D.3
  • 10
    • 85122279702 scopus 로고    scopus 로고
    • Named entity recognition through classifier combination
    • R. Florian, A. Ittycheriah, H. Jing, and T. Zhang. 2003. Named entity recognition through classifier combination. In CoNLL.
    • (2003) CoNLL
    • Florian, R.1    Ittycheriah, A.2    Jing, H.3    Zhang, T.4
  • 11
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. Schapire. 1999. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277-296.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.2
  • 12
    • 80053362929 scopus 로고    scopus 로고
    • Exploiting wikipedia as external knowledge for named entity recognition
    • J. Kazama and K. Torisawa. 2007a. Exploiting wikipedia as external knowledge for named entity recognition. In EMNLP.
    • (2007) EMNLP
    • Kazama, J.1    Torisawa, K.2
  • 13
    • 77956854902 scopus 로고    scopus 로고
    • A new perceptron algorithm for sequence labeling with non-local features
    • J. Kazama and K. Torisawa. 2007b. A new perceptron algorithm for sequence labeling with non-local features. In EMNLP-CoNLL.
    • (2007) EMNLP-CoNLL
    • Kazama, J.1    Torisawa, K.2
  • 14
    • 80053551637 scopus 로고    scopus 로고
    • Simple semi-supervised dependency parsing
    • T. Koo, X. Carreras, and M. Collins. 2008. Simple semi-supervised dependency parsing. In ACL.
    • (2008) ACL
    • Koo, T.1    Carreras, X.2    Collins, M.3
  • 15
    • 80053344402 scopus 로고    scopus 로고
    • An effective two stage model for exploiting non-local dependencies in named entity recognition
    • V. Krishnan and C. D. Manning. 2006. An effective two stage model for exploiting non-local dependencies in named entity recognition. In ACL.
    • (2006) ACL
    • Krishnan, V.1    Manning, C.D.2
  • 16
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Morgan Kaufmann
    • J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML. Morgan Kaufmann.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 18
    • 85117730830 scopus 로고    scopus 로고
    • Name tagging with word clusters and discriminative training
    • S. Miller, J. Guinness, and A. Zamanian. 2004. Name tagging with word clusters and discriminative training. In HLT-NAACL.
    • (2004) HLT-NAACL
    • Miller, S.1    Guinness, J.2    Zamanian, A.3
  • 20
    • 31844433358 scopus 로고    scopus 로고
    • Predicting good probabilities with supervised learning
    • A. Niculescu-Mizil and R. Caruana. 2005. Predicting good probabilities with supervised learning. In ICML.
    • (2005) ICML
    • Niculescu-Mizil, A.1    Caruana, R.2
  • 21
    • 84899004090 scopus 로고    scopus 로고
    • The use of classifiers in sequential inference
    • V. Punyakanok and D. Roth. 2001. The use of classifiers in sequential inference. In NIPS.
    • (2001) NIPS
    • Punyakanok, V.1    Roth, D.2
  • 22
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • L. R. Rabiner. 1989. A tutorial on hidden markov models and selected applications in speech recognition. In IEEE.
    • (1989) IEEE
    • Rabiner, L.R.1
  • 23
    • 1642371528 scopus 로고    scopus 로고
    • Learning dictionaries for information extraction by multi-level bootstrapping
    • E. Riloff and R. Jones. 1999. Learning dictionaries for information extraction by multi-level bootstrapping. In AAAI.
    • (1999) AAAI
    • Riloff, E.1    Jones, R.2
  • 24
    • 47749138183 scopus 로고    scopus 로고
    • Modeling discriminative global inference
    • N. Rizzolo and D. Roth. 2007. Modeling discriminative global inference. In ICSC.
    • (2007) ICSC
    • Rizzolo, N.1    Roth, D.2
  • 25
    • 85018090213 scopus 로고    scopus 로고
    • Part of speech tagging using a network of linear separators
    • D. Roth and D. Zelenko. 1998. Part of speech tagging using a network of linear separators. In COLING-ACL.
    • (1998) COLING-ACL
    • Roth, D.1    Zelenko, D.2
  • 26
    • 26944445034 scopus 로고    scopus 로고
    • Voting between multiple data representations for text chunking
    • H. Shen and A. Sarkar. 2005. Voting between multiple data representations for text chunking. Advances in Artificial Intelligence, pages 389-400.
    • (2005) Advances In Artificial Intelligence , pp. 389-400
    • Shen, H.1    Sarkar, A.2
  • 27
    • 84859884966 scopus 로고    scopus 로고
    • Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data
    • J. Suzuki and H. Isozaki. 2008. Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data. In ACL.
    • (2008) ACL
    • Suzuki, J.1    Isozaki, H.2
  • 28
    • 85099019865 scopus 로고    scopus 로고
    • Introduction to the conll-2003 shared task: Language-independent named entity recognition
    • E. Tjong, K. and F. De Meulder. 2003. Introduction to the conll-2003 shared task: Language-independent named entity recognition. In CoNLL.
    • (2003) CoNLL
    • Tjong, E.K.1    de Meulder, F.2
  • 29
    • 78650232793 scopus 로고    scopus 로고
    • A proposal to automatically build and maintain gazetteers for named entity recognition by using wikipedia
    • A. Toral and R. Munoz. 2006. A proposal to automatically build and maintain gazetteers for named entity recognition by using wikipedia. In EACL.
    • (2006) EACL
    • Toral, A.1    Munoz, R.2
  • 30
    • 84983470508 scopus 로고    scopus 로고
    • Feature-rich part-of-speech tagging with a cyclic dependency network
    • K. Toutanova, D. Klein, C. Manning, and Y. Singer. 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In NAACL.
    • (2003) NAACL
    • Toutanova, K.1    Klein, D.2    Manning, C.3    Singer, Y.4
  • 31
    • 0013157252 scopus 로고    scopus 로고
    • Representing text chunks
    • J. Veenstra. 1999. Representing text chunks. In EACL.
    • (1999) EACL
    • Veenstra, J.1
  • 32
    • 84919495233 scopus 로고    scopus 로고
    • A robust risk minimization based named entity recognition system
    • T. Zhang and D. Johnson. 2003. A robust risk minimization based named entity recognition system. In CoNLL.
    • (2003) CoNLL
    • Zhang, T.1    Johnson, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.