메뉴 건너뛰기




Volumn 3, Issue , 2015, Pages 2267-2273

Recurrent convolutional neural networks for text classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); CONVOLUTION; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS;

EID: 84959872385     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1955)

References (33)
  • 1
    • 84873127711 scopus 로고    scopus 로고
    • A survey oftext classification algorithms
    • Springer
    • Aggarwal, C. C, and Zhai, C. 2012. A survey oftext classification algorithms. In Mining text data. Springer. 163-222.
    • (2012) Mining Text Data , pp. 163-222
    • Aggarwal, C.C.1    Zhai, C.2
  • 2
    • 84906930943 scopus 로고    scopus 로고
    • Don't count, predict! A systematic comparison of context-counting vs. Context-predicting semantic vectors
    • Baroni, M.; Dinu, G.; and Kruszewski, G. 2014. Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In ACL, 238-247.
    • (2014) ACL , pp. 238-247
    • Baroni, M.1    Dinu, G.2    Kruszewski, G.3
  • 3
    • 0142166851 scopus 로고    scopus 로고
    • A neural probabilistic language model
    • Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003. A Neural Probabilistic Language Model. JMLR 3:1137-1155.
    • (2003) JMLR , vol.3 , pp. 1137-1155
    • Bengio, Y.1    Ducharme, R.2    Vincent, P.3    Jauvin, C.4
  • 4
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Bengio, Y; Courville, A.; and Vincent, P. 2013. Representation learning: A review and new perspectives. IEEE TPAMI 35(8): 1798-1828.
    • (2013) IEEE TPAMI , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 5
    • 33847215211 scopus 로고
    • Stochastic gradient learning in neural networks
    • Bottou, L. 1991. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nimes, volume 91.
    • (1991) Proceedings of Neuro-Nimes , vol.91
    • Bottou, L.1
  • 6
    • 1542377542 scopus 로고    scopus 로고
    • Text categorization by boosting automatically extracted concepts
    • Cai, L., and Hofmann, T. 2003. Text categorization by boosting automatically extracted concepts. In SIGIR, 182-189.
    • (2003) SIGIR , pp. 182-189
    • Cai, L.1    Hofmann, T.2
  • 7
    • 84859885240 scopus 로고    scopus 로고
    • Coarse-to-fine n-best parsing and maxent discriminative reranking
    • Charniak, E., and Johnson, M. 2005. Coarse-to-fine n-best parsing and maxent discriminative reranking. In ACL, 173-180.
    • (2005) ACL , pp. 173-180
    • Charniak, E.1    Johnson, M.2
  • 10
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. L. 1990. Finding structure in time. Cognitive science 14(2): 179-211.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing the dimensionality of data with neural networks. Science 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 14
    • 84878180089 scopus 로고    scopus 로고
    • Improving word representations via global context and multiple word prototypes
    • Huang, E. H.; Socher, R.; Manning, C. D.; and Ng, A. Y 2012. Improving word representations via global context and multiple word prototypes. In ACL, 873-882.
    • (2012) ACL , pp. 873-882
    • Huang, E.H.1    Socher, R.2    Manning, C.D.3    Ng, A.Y.4
  • 15
    • 85051665073 scopus 로고    scopus 로고
    • Recurrent convo-lutional neural networks for discourse compositionality
    • Kalchbrenner, N., and Blunsom, P. 2013. Recurrent convo-lutional neural networks for discourse compositionality. In Workshop on CVSC, 119-126.
    • (2013) Workshop on CVSC , pp. 119-126
    • Kalchbrenner, N.1    Blunsom, P.2
  • 16
    • 84876812227 scopus 로고    scopus 로고
    • Inducing crosslingual distributed representations of words
    • Klementiev, A.; Titov, I.; and Bhattarai, B. 2012. Inducing crosslingual distributed representations of words. In Coling, 1459-1474.
    • (2012) Coling , pp. 1459-1474
    • Klementiev, A.1    Titov, I.2    Bhattarai, B.3
  • 17
    • 84919829999 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Le, Q. V, and Mikolov, T. 2014. Distributed representations of sentences and documents. In ICML.
    • (2014) ICML
    • Le, Q.V.1    Mikolov, T.2
  • 18
    • 0027001621 scopus 로고
    • An evaluation of phrasal and clustered representations on a text categorization task
    • Lewis, D. D. 1992. An evaluation of phrasal and clustered representations on a text categorization task. In SIGIR, 37-50.
    • (1992) SIGIR , pp. 37-50
    • Lewis, D.D.1
  • 19
    • 43749088228 scopus 로고    scopus 로고
    • Text classification based on labeled-Ida model
    • Li, W.; Sun, L.; and Zhang, D. 2008. Text classification based on labeled-Ida model. Chinese Journal of Computers 31(4):620-627.
    • (2008) Chinese Journal of Computers , vol.31 , Issue.4 , pp. 620-627
    • Li, W.1    Sun, L.2    Zhang, D.3
  • 20
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J. 2013. Distributed representations of words and phrases and their compositionality. In NIPS, 3111-3119.
    • (2013) NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 21
    • 84926179397 scopus 로고    scopus 로고
    • Linguistic regularities in continuous space word representations
    • Mikolov, T.; Yih, W.-t.; and Zweig, G. 2013. Linguistic regularities in continuous space word representations. In NAACL-HLT, 746-751.
    • (2013) NAACL-HLT , pp. 746-751
    • Mikolov, T.1    Yih, W.-T.2    Zweig, G.3
  • 23
    • 34547970628 scopus 로고    scopus 로고
    • Three new graphical models for statistical language modelling
    • Mnih, A., and Hinton, G. 2007. Three new graphical models for statistical language modelling. In ICML, 641-648.
    • (2007) ICML , pp. 641-648
    • Mnih, A.1    Hinton, G.2
  • 24
    • 34547997987 scopus 로고    scopus 로고
    • Hierarchical probabilistic neural network language model
    • Morin, R, and Bengio, Y. 2005. Hierarchical probabilistic neural network language model. In AISTATS, 246-252.
    • (2005) AISTATS , pp. 246-252
    • Morin, R.1    Bengio, Y.2
  • 25
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, 11 vs. 12 regularization, and rotational invariance
    • Ng, A. Y 2004. Feature selection, 11 vs. 12 regularization, and rotational invariance. In ICML, 78.
    • (2004) ICML , vol.78
    • Ng, A.Y.1
  • 26
    • 36348934026 scopus 로고    scopus 로고
    • Learning accurate, compact, and interpretable tree annotation
    • Petrov, S.; Barrett, L.; Thibaux, R.; and Klein, D. 2006. Learning accurate, compact, and interpretable tree annotation. In Coling-ACL, 433-440.
    • (2006) Coling-ACL , pp. 433-440
    • Petrov, S.1    Barrett, L.2    Thibaux, R.3    Klein, D.4
  • 27
    • 0001969496 scopus 로고
    • Learning sets of filters using back-propagation
    • Plaut, D. C, and Hinton, G. E. 1987. Learning sets of filters using back-propagation. Computer Speech & Language 2(1):35-61.
    • (1987) Computer Speech & Language , vol.2 , Issue.1 , pp. 35-61
    • Plaut, D.C.1    Hinton, G.E.2
  • 28
    • 84887425549 scopus 로고    scopus 로고
    • Explicit and implicit syntactic features for text classification
    • Post, M., and Bergsma, S. 2013. Explicit and implicit syntactic features for text classification. In ACL, 866-872.
    • (2013) ACL , pp. 866-872
    • Post, M.1    Bergsma, S.2
  • 29
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
    • Socher, R.; Huang, E. H.; Pennington, J.; Ng, A. Y.; and Manning, C. D. 2011a. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In NIPS, volume 24, 801-809.
    • (2011) NIPS , vol.24 , pp. 801-809
    • Socher, R.1    Huang, E.H.2    Pennington, J.3    Ng, A.Y.4    Manning, C.D.5
  • 30
    • 80053261327 scopus 로고    scopus 로고
    • Semi-supervised recursive autoencoders for predicting sentiment distributions
    • Socher, R.; Pennington, J.; Huang, E. H.; Ng, A. Y; and Manning, C. D. 2011b. Semi-supervised recursive autoencoders for predicting sentiment distributions. In EMNLP, 151-161.
    • (2011) EMNLP , pp. 151-161
    • Socher, R.1    Pennington, J.2    Huang, E.H.3    Ng, A.Y.4    Manning, C.D.5
  • 31
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank
    • Socher, R.; Perelygin, A.; Wu, J. Y; Chuang, J.; Manning, C. D.; Ng, A. Y; and Potts, C. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, 1631-1642.
    • (2013) EMNLP , pp. 1631-1642
    • Socher, R.1    Perelygin, A.2    Wu, J.Y.3    Chuang, J.4    Manning, C.D.5    Ng, A.Y.6    Potts, C.7
  • 32
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Turian, J.; Ralinov, L.; and Bengio, Y. 2010. Word representations: a simple and general method for semi-supervised learning. In ACL, 384-394.
    • (2010) ACL , pp. 384-394
    • Turian, J.1    Ralinov, L.2    Bengio, Y.3
  • 33
    • 84875872773 scopus 로고    scopus 로고
    • Baselines and bigrams: Simple, good sentiment and topic classification
    • Wang, S., and Manning, C. D. 2012. Baselines and bigrams: Simple, good sentiment and topic classification. In ACL, 90-94.
    • (2012) ACL , pp. 90-94
    • Wang, S.1    Manning, C.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.