-
1
-
-
84873127711
-
A survey oftext classification algorithms
-
Springer
-
Aggarwal, C. C, and Zhai, C. 2012. A survey oftext classification algorithms. In Mining text data. Springer. 163-222.
-
(2012)
Mining Text Data
, pp. 163-222
-
-
Aggarwal, C.C.1
Zhai, C.2
-
2
-
-
84906930943
-
Don't count, predict! A systematic comparison of context-counting vs. Context-predicting semantic vectors
-
Baroni, M.; Dinu, G.; and Kruszewski, G. 2014. Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In ACL, 238-247.
-
(2014)
ACL
, pp. 238-247
-
-
Baroni, M.1
Dinu, G.2
Kruszewski, G.3
-
3
-
-
0142166851
-
A neural probabilistic language model
-
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003. A Neural Probabilistic Language Model. JMLR 3:1137-1155.
-
(2003)
JMLR
, vol.3
, pp. 1137-1155
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
Jauvin, C.4
-
4
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y; Courville, A.; and Vincent, P. 2013. Representation learning: A review and new perspectives. IEEE TPAMI 35(8): 1798-1828.
-
(2013)
IEEE TPAMI
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
5
-
-
33847215211
-
Stochastic gradient learning in neural networks
-
Bottou, L. 1991. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nimes, volume 91.
-
(1991)
Proceedings of Neuro-Nimes
, vol.91
-
-
Bottou, L.1
-
6
-
-
1542377542
-
Text categorization by boosting automatically extracted concepts
-
Cai, L., and Hofmann, T. 2003. Text categorization by boosting automatically extracted concepts. In SIGIR, 182-189.
-
(2003)
SIGIR
, pp. 182-189
-
-
Cai, L.1
Hofmann, T.2
-
7
-
-
84859885240
-
Coarse-to-fine n-best parsing and maxent discriminative reranking
-
Charniak, E., and Johnson, M. 2005. Coarse-to-fine n-best parsing and maxent discriminative reranking. In ACL, 173-180.
-
(2005)
ACL
, pp. 173-180
-
-
Charniak, E.1
Johnson, M.2
-
8
-
-
80053558787
-
Natural language processing (almost) from scratch
-
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language processing (almost) from scratch. JMLR 12:2493-2537.
-
(2011)
JMLR
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
10
-
-
26444565569
-
Finding structure in time
-
Elman, J. L. 1990. Finding structure in time. Cognitive science 14(2): 179-211.
-
(1990)
Cognitive Science
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
11
-
-
77949522811
-
Why does unsupervised pretraining help deep learning?
-
Erhan, D.; Bengio, Y; Courville, A.; Manzagol, P.-A.; Vincent, P.; and Bengio, S. 2010. Why does unsupervised pretraining help deep learning? JMLR 11:625-660.
-
(2010)
JMLR
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
12
-
-
84883085195
-
Document classification by topic labeling
-
Hingmire, S.; Chougule, S.; Palshikar, G. K.; and Chakraborti, S. 2013. Document classification by topic labeling. In SIGIR, 877-880.
-
(2013)
SIGIR
, pp. 877-880
-
-
Hingmire, S.1
Chougule, S.2
Palshikar, G.K.3
Chakraborti, S.4
-
13
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing the dimensionality of data with neural networks. Science 313(5786):504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
14
-
-
84878180089
-
Improving word representations via global context and multiple word prototypes
-
Huang, E. H.; Socher, R.; Manning, C. D.; and Ng, A. Y 2012. Improving word representations via global context and multiple word prototypes. In ACL, 873-882.
-
(2012)
ACL
, pp. 873-882
-
-
Huang, E.H.1
Socher, R.2
Manning, C.D.3
Ng, A.Y.4
-
15
-
-
85051665073
-
Recurrent convo-lutional neural networks for discourse compositionality
-
Kalchbrenner, N., and Blunsom, P. 2013. Recurrent convo-lutional neural networks for discourse compositionality. In Workshop on CVSC, 119-126.
-
(2013)
Workshop on CVSC
, pp. 119-126
-
-
Kalchbrenner, N.1
Blunsom, P.2
-
16
-
-
84876812227
-
Inducing crosslingual distributed representations of words
-
Klementiev, A.; Titov, I.; and Bhattarai, B. 2012. Inducing crosslingual distributed representations of words. In Coling, 1459-1474.
-
(2012)
Coling
, pp. 1459-1474
-
-
Klementiev, A.1
Titov, I.2
Bhattarai, B.3
-
17
-
-
84919829999
-
Distributed representations of sentences and documents
-
Le, Q. V, and Mikolov, T. 2014. Distributed representations of sentences and documents. In ICML.
-
(2014)
ICML
-
-
Le, Q.V.1
Mikolov, T.2
-
18
-
-
0027001621
-
An evaluation of phrasal and clustered representations on a text categorization task
-
Lewis, D. D. 1992. An evaluation of phrasal and clustered representations on a text categorization task. In SIGIR, 37-50.
-
(1992)
SIGIR
, pp. 37-50
-
-
Lewis, D.D.1
-
19
-
-
43749088228
-
Text classification based on labeled-Ida model
-
Li, W.; Sun, L.; and Zhang, D. 2008. Text classification based on labeled-Ida model. Chinese Journal of Computers 31(4):620-627.
-
(2008)
Chinese Journal of Computers
, vol.31
, Issue.4
, pp. 620-627
-
-
Li, W.1
Sun, L.2
Zhang, D.3
-
20
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J. 2013. Distributed representations of words and phrases and their compositionality. In NIPS, 3111-3119.
-
(2013)
NIPS
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
21
-
-
84926179397
-
Linguistic regularities in continuous space word representations
-
Mikolov, T.; Yih, W.-t.; and Zweig, G. 2013. Linguistic regularities in continuous space word representations. In NAACL-HLT, 746-751.
-
(2013)
NAACL-HLT
, pp. 746-751
-
-
Mikolov, T.1
Yih, W.-T.2
Zweig, G.3
-
23
-
-
34547970628
-
Three new graphical models for statistical language modelling
-
Mnih, A., and Hinton, G. 2007. Three new graphical models for statistical language modelling. In ICML, 641-648.
-
(2007)
ICML
, pp. 641-648
-
-
Mnih, A.1
Hinton, G.2
-
24
-
-
34547997987
-
Hierarchical probabilistic neural network language model
-
Morin, R, and Bengio, Y. 2005. Hierarchical probabilistic neural network language model. In AISTATS, 246-252.
-
(2005)
AISTATS
, pp. 246-252
-
-
Morin, R.1
Bengio, Y.2
-
25
-
-
14344249889
-
Feature selection, 11 vs. 12 regularization, and rotational invariance
-
Ng, A. Y 2004. Feature selection, 11 vs. 12 regularization, and rotational invariance. In ICML, 78.
-
(2004)
ICML
, vol.78
-
-
Ng, A.Y.1
-
26
-
-
36348934026
-
Learning accurate, compact, and interpretable tree annotation
-
Petrov, S.; Barrett, L.; Thibaux, R.; and Klein, D. 2006. Learning accurate, compact, and interpretable tree annotation. In Coling-ACL, 433-440.
-
(2006)
Coling-ACL
, pp. 433-440
-
-
Petrov, S.1
Barrett, L.2
Thibaux, R.3
Klein, D.4
-
27
-
-
0001969496
-
Learning sets of filters using back-propagation
-
Plaut, D. C, and Hinton, G. E. 1987. Learning sets of filters using back-propagation. Computer Speech & Language 2(1):35-61.
-
(1987)
Computer Speech & Language
, vol.2
, Issue.1
, pp. 35-61
-
-
Plaut, D.C.1
Hinton, G.E.2
-
28
-
-
84887425549
-
Explicit and implicit syntactic features for text classification
-
Post, M., and Bergsma, S. 2013. Explicit and implicit syntactic features for text classification. In ACL, 866-872.
-
(2013)
ACL
, pp. 866-872
-
-
Post, M.1
Bergsma, S.2
-
29
-
-
85162476102
-
Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
-
Socher, R.; Huang, E. H.; Pennington, J.; Ng, A. Y.; and Manning, C. D. 2011a. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In NIPS, volume 24, 801-809.
-
(2011)
NIPS
, vol.24
, pp. 801-809
-
-
Socher, R.1
Huang, E.H.2
Pennington, J.3
Ng, A.Y.4
Manning, C.D.5
-
30
-
-
80053261327
-
Semi-supervised recursive autoencoders for predicting sentiment distributions
-
Socher, R.; Pennington, J.; Huang, E. H.; Ng, A. Y; and Manning, C. D. 2011b. Semi-supervised recursive autoencoders for predicting sentiment distributions. In EMNLP, 151-161.
-
(2011)
EMNLP
, pp. 151-161
-
-
Socher, R.1
Pennington, J.2
Huang, E.H.3
Ng, A.Y.4
Manning, C.D.5
-
31
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank
-
Socher, R.; Perelygin, A.; Wu, J. Y; Chuang, J.; Manning, C. D.; Ng, A. Y; and Potts, C. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, 1631-1642.
-
(2013)
EMNLP
, pp. 1631-1642
-
-
Socher, R.1
Perelygin, A.2
Wu, J.Y.3
Chuang, J.4
Manning, C.D.5
Ng, A.Y.6
Potts, C.7
-
32
-
-
80053495924
-
Word representations: A simple and general method for semi-supervised learning
-
Turian, J.; Ralinov, L.; and Bengio, Y. 2010. Word representations: a simple and general method for semi-supervised learning. In ACL, 384-394.
-
(2010)
ACL
, pp. 384-394
-
-
Turian, J.1
Ralinov, L.2
Bengio, Y.3
-
33
-
-
84875872773
-
Baselines and bigrams: Simple, good sentiment and topic classification
-
Wang, S., and Manning, C. D. 2012. Baselines and bigrams: Simple, good sentiment and topic classification. In ACL, 90-94.
-
(2012)
ACL
, pp. 90-94
-
-
Wang, S.1
Manning, C.D.2
|