메뉴 건너뛰기




Volumn 10, Issue 5, 2018, Pages

Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning

Author keywords

Convolutional neural networks; Deep learning; High resolution remote sensing images; Superpixel; Urban water bodies

Indexed keywords

CLIMATE CHANGE; CLUSTERING ALGORITHMS; CONVOLUTION; DEEP LEARNING; ECOSYSTEMS; IMAGE SEGMENTATION; ITERATIVE METHODS; NETWORK ARCHITECTURE; NEURAL NETWORKS; PIXELS; REMOTE SENSING; SUPERPIXELS; SURFACE WATERS;

EID: 85046655775     PISSN: None     EISSN: 20734441     Source Type: Journal    
DOI: 10.3390/w10050585     Document Type: Article
Times cited : (176)

References (35)
  • 1
    • 84872899328 scopus 로고    scopus 로고
    • Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art
    • Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Res. 2013, 51, 261-279
    • (2013) Adv. Water Res , vol.51 , pp. 261-279
    • Fletcher, T.D.1    Andrieu, H.2    Hamel, P.3
  • 2
    • 79958153278 scopus 로고    scopus 로고
    • Water and Wastewater Pipe Nondestructive Evaluation and Health Monitoring: A Review
    • Rizzo, P. Water and Wastewater Pipe Nondestructive Evaluation and Health Monitoring: A Review. Adv. Civ. Eng. 2010, 2010, 818597
    • (2010) Adv. Civ. Eng , vol.2010
    • Rizzo, P.1
  • 3
    • 84939436339 scopus 로고    scopus 로고
    • Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images
    • Byun, Y.; Han, Y.; Chae, T. Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images. Remote Sens. 2015, 7, 10347-10363
    • (2015) Remote Sens , vol.7 , pp. 10347-10363
    • Byun, Y.1    Han, Y.2    Chae, T.3
  • 4
    • 85021177398 scopus 로고    scopus 로고
    • Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening
    • Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596
    • (2017) Remote Sens , vol.9 , pp. 596
    • Yang, X.1    Zhao, S.2    Qin, X.3    Zhao, N.4    Liang, L.5
  • 5
    • 84971671499 scopus 로고    scopus 로고
    • Water bodies' mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the SWIR band
    • Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies' mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354
    • (2016) Remote Sens , vol.8 , pp. 354
    • Du, Y.1    Zhang, Y.2    Ling, F.3    Wang, Q.4    Li, W.5    Li, X.6
  • 7
    • 84945971391 scopus 로고    scopus 로고
    • A natural-rule-based-connection (NRBC) method for river network extraction from high-resolution imagery
    • Zeng, C.; Bird, S.; Luce, J.J.; Wang, J. A natural-rule-based-connection (NRBC) method for river network extraction from high-resolution imagery. Remote Sens. 2015, 7, 14055-14078
    • (2015) Remote Sens , vol.7 , pp. 14055-14078
    • Zeng, C.1    Bird, S.2    Luce, J.J.3    Wang, J.4
  • 8
    • 34547134220 scopus 로고    scopus 로고
    • Detailed mapping of a salt farm from Landsat TM imagery using neural network and maxi-mum likelihood classifiers: A comparison
    • Zhang, Y.; Gao, J.; Wang, J. Detailed mapping of a salt farm from Landsat TM imagery using neural network and maxi-mum likelihood classifiers: A comparison. Int. J. Remote Sens. 2007, 28, 2077-2089
    • (2007) Int. J. Remote Sens , vol.28 , pp. 2077-2089
    • Zhang, Y.1    Gao, J.2    Wang, J.3
  • 9
    • 85044356207 scopus 로고    scopus 로고
    • Comparison of Multiple Bioactive Constituents in Different Parts of Eucommia ulmoides Based on UFLC-QTRAP-MS/MS Combined with PCA
    • Yan, Y.; Zhao, H.; Chen, C.; Zou, L.; Liu, X.; Chai, C.; Wang, C.; Shi, J.; Chen, S. Comparison of Multiple Bioactive Constituents in Different Parts of Eucommia ulmoides Based on UFLC-QTRAP-MS/MS Combined with PCA. Molecules 2018, 23, 643
    • (2018) Molecules , vol.23 , pp. 643
    • Yan, Y.1    Zhao, H.2    Chen, C.3    Zou, L.4    Liu, X.5    Chai, C.6    Wang, C.7    Shi, J.8    Chen, S.9
  • 10
    • 84928653893 scopus 로고    scopus 로고
    • Super-Resolution Mapping ofWetland Inundation from Remote Sensing Imagery Based on Integration of Back-Propagation Neural Network and Genetic Algorithm
    • Li, L.; Chen, Y.; Xu, T.; Liu, R.; Shi, K.; Huang, C. Super-Resolution Mapping ofWetland Inundation from Remote Sensing Imagery Based on Integration of Back-Propagation Neural Network and Genetic Algorithm. Remote Sens. Environ. 2015, 164, 142-154
    • (2015) Remote Sens. Environ , vol.164 , pp. 142-154
    • Li, L.1    Chen, Y.2    Xu, T.3    Liu, R.4    Shi, K.5    Huang, C.6
  • 11
    • 0030136491 scopus 로고    scopus 로고
    • The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features
    • McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425-1432
    • (1996) Int. J. Remote Sens , vol.17 , pp. 1425-1432
    • McFeeters, S.K.1
  • 12
    • 84924345605 scopus 로고    scopus 로고
    • An evaluation of Suomi NPP-VIIRS data for surface water detection
    • Huang, C.; Chen, Y.;Wu, J.; Li, L.; Liu, R. An evaluation of Suomi NPP-VIIRS data for surface water detection. Remote Sens. Lett. 2015, 6, 155-164
    • (2015) Remote Sens. Lett , vol.6 , pp. 155-164
    • Huang, C.1    Chen, Y.2    Wu, J.3    Li, L.4    Liu, R.5
  • 13
    • 33747136902 scopus 로고    scopus 로고
    • Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
    • Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025-3033
    • (2006) Int. J. Remote Sens , vol.27 , pp. 3025-3033
    • Xu, H.1
  • 14
    • 84884256674 scopus 로고    scopus 로고
    • Automated Water Extraction Index: A new technique forsurface water mapping using Landsat imagery
    • Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique forsurface water mapping using Landsat imagery. Remote Sens. Environ. 2013, 140, 23-35
    • (2013) Remote Sens. Environ , vol.140 , pp. 23-35
    • Feyisa, G.L.1    Meilby, H.2    Fensholt, R.3    Proud, S.R.4
  • 15
    • 84965177578 scopus 로고    scopus 로고
    • Undermining demand management with supply management: Moral hazard in Israeli water policies
    • Katz, D. Undermining demand management with supply management: Moral hazard in Israeli water policies. Water 2016, 8, 159
    • (2016) Water , vol.8 , pp. 159
    • Katz, D.1
  • 16
    • 84958775597 scopus 로고    scopus 로고
    • Extraction and preference ordering of multireservoir water supply rules in dry years
    • Kang, L.; Zhang, S.; Ding, Y.; He, X. Extraction and preference ordering of multireservoir water supply rules in dry years. Water 2016, 8, 28
    • (2016) Water , vol.8 , pp. 28
    • Kang, L.1    Zhang, S.2    Ding, Y.3    He, X.4
  • 17
    • 85041717900 scopus 로고    scopus 로고
    • Reconstruction of river boundaries at sub-pixel resolution: Estimation and spatial allocation of water fractions
    • Niroumand-Jadidi, M.; Vitti, A. Reconstruction of river boundaries at sub-pixel resolution: Estimation and spatial allocation of water fractions. ISPRS Int. J. Geo-Inf. 2017, 6, 383
    • (2017) ISPRS Int. J. Geo-Inf , vol.6 , pp. 383
    • Niroumand-Jadidi, M.1    Vitti, A.2
  • 18
    • 85009921542 scopus 로고    scopus 로고
    • Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
    • Vieira, S.; Pinaya, W.H.L.; Mechelli, A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci. Biobehav. Rev. 2017, 74, 58-75
    • (2017) Neurosci. Biobehav. Rev , vol.74 , pp. 58-75
    • Vieira, S.1    Pinaya, W.H.L.2    Mechelli, A.3
  • 19
    • 84959019397 scopus 로고    scopus 로고
    • Deep Convolutional Neural Network Classifier for Handwritten Devanagari Character Recognition
    • Springer: New Delhi, India
    • Singh, P.; Verma, A.; Chaudhari, N.S. Deep Convolutional Neural Network Classifier for Handwritten Devanagari Character Recognition. In Information Systems Design and Intelligent Applications; Springer: New Delhi, India, 2016
    • (2016) In Information Systems Design and Intelligent Applications
    • Singh, P.1    Verma, A.2    Chaudhari, N.S.3
  • 20
    • 85029554489 scopus 로고    scopus 로고
    • Review of Convolutional Neural Network
    • Zhou, F.-Y.; Jin, L.-P.; Dong, J. Review of Convolutional Neural Network. Chin. J. Comput. 2017, 40, 1229-1251
    • (2017) Chin. J. Comput , vol.40 , pp. 1229-1251
    • Zhou, F.-Y.1    Jin, L.-P.2    Dong, J.3
  • 21
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 22
    • 85042524529 scopus 로고    scopus 로고
    • Remote Sensing Scene Classification Based on Convolutional Neural Networks Pre-Trained Using Attention-Guided Sparse Filters
    • Chen, J.; Wang, C.; Ma, Z.; Chen, J.; He, D.; Ackland, S. Remote Sensing Scene Classification Based on Convolutional Neural Networks Pre-Trained Using Attention-Guided Sparse Filters. Remote Sens. 2018, 10, 290
    • (2018) Remote Sens , vol.10 , pp. 290
    • Chen, J.1    Wang, C.2    Ma, Z.3    Chen, J.4    He, D.5    Ackland, S.6
  • 26
    • 85044101701 scopus 로고    scopus 로고
    • Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient Descent Optimizer
    • Yang, J.; Yang, G. Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient Descent Optimizer. Algorithms 2018, 11, 28
    • (2018) Algorithms , vol.11 , pp. 28
    • Yang, J.1    Yang, G.2
  • 27
    • 85044173539 scopus 로고    scopus 로고
    • Landsat Super-Resolution Enhancement Using Convolution Neural Networks and Sentinel-2 for Training
    • Pouliot, D.; Latifovic, R.; Pasher, J.; Duffe, J. Landsat Super-Resolution Enhancement Using Convolution Neural Networks and Sentinel-2 for Training. Remote Sens. 2018, 10, 394
    • (2018) Remote Sens , vol.10 , pp. 394
    • Pouliot, D.1    Latifovic, R.2    Pasher, J.3    Duffe, J.4
  • 28
    • 85017657736 scopus 로고    scopus 로고
    • Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels
    • Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote Sens. 2017, 9, 243
    • (2017) Remote Sens , vol.9 , pp. 243
    • Csillik, O.1
  • 32
    • 85026900965 scopus 로고    scopus 로고
    • A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis
    • Li, H.; Liu, J.; Liu, R.W.; Xiong, N.; Wu, K.; Kim, T.-H. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis. Sensors 2017, 17, 1792
    • (2017) Sensors , vol.17 , pp. 1792
    • Li, H.1    Liu, J.2    Liu, R.W.3    Xiong, N.4    Wu, K.5    Kim, T.-H.6
  • 33
    • 85027941310 scopus 로고    scopus 로고
    • Superpixel-based graphical model for remote sensing image mapping
    • Guangyun, Z.; Xiuping, J.; Jiankun, H. Superpixel-based graphical model for remote sensing image mapping. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5861-5871
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 5861-5871
    • Guangyun, Z.1    Xiuping, J.2    Jiankun, H.3
  • 35
    • 85016204952 scopus 로고    scopus 로고
    • Convolutional neural networks for water body extraction from landsat imagery
    • Yu, L.; Wang, Z.; Tian, S.; Ye, F.; Ding, J.; Kong, J. Convolutional neural networks for water body extraction from landsat imagery. Int. J. Comput. Intell. Appl. 2017, 16, 1750001
    • (2017) Int. J. Comput. Intell. Appl , vol.16
    • Yu, L.1    Wang, Z.2    Tian, S.3    Ye, F.4    Ding, J.5    Kong, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.