메뉴 건너뛰기




Volumn 11, Issue 3, 2018, Pages

Modified convolutional neural network based on dropout and the stochastic gradient descent optimizer

Author keywords

Activate function; Convolutional neural network; Dropout; SGD optimizer

Indexed keywords

CONVOLUTION; GRADIENT METHODS; LEARNING ALGORITHMS; NEURAL NETWORKS; OPTIMIZATION; STOCHASTIC SYSTEMS; SUPPORT VECTOR MACHINES;

EID: 85044101701     PISSN: None     EISSN: 19994893     Source Type: Journal    
DOI: 10.3390/a11030028     Document Type: Article
Times cited : (108)

References (28)
  • 1
    • 85009921542 scopus 로고    scopus 로고
    • Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
    • Vieira, S., Pinaya, W.H.L., Mechelli, A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci. Biobehav. Rev. 2017 , 74 , 58-75.
    • (2017) Neurosci. Biobehav. Rev , vol.74 , pp. 58-75
    • Vieira, S.1    Pinaya, W.H.L.2    Mechelli, A.3
  • 2
    • 85009274672 scopus 로고    scopus 로고
    • A Fast and Memory Saved GPU Acceleration Algorithm of Convolutional Neural Networks for Target Detection
    • Li, S., Dou, Y., Niu, X., Lv, Q., Wang, Q. A Fast and Memory Saved GPU Acceleration Algorithm of Convolutional Neural Networks for Target Detection. Neurocomputing 2017 , 230 , 48-59.
    • (2017) Neurocomputing , vol.230 , pp. 48-59
    • Li, S.1    Dou, Y.2    Niu, X.3    Lv, Q.4    Wang, Q.5
  • 3
    • 85034664596 scopus 로고    scopus 로고
    • GPU-based parallel optimization of immune convolutional neural network and embedded system
    • Gong, T., Fan, T., Guo, J., Cai, Z. GPU-based parallel optimization of immune convolutional neural network and embedded system. Eng. Appl. Artif. Intell. 2016 , 36 , 226-238.
    • (2016) Eng. Appl. Artif. Intell , vol.36 , pp. 226-238
    • Gong, T.1    Fan, T.2    Guo, J.3    Cai, Z.4
  • 4
    • 84900433919 scopus 로고    scopus 로고
    • Weights and structure determination method of multiple-input Sigmoid activation function neural network
    • Zhang, Y.N., Qu, L., Chen, J.W., Liu, J.R., Guo, D.S. Weights and structure determination method of multiple-input Sigmoid activation function neural network. Appl. Res. Comput. 2012 , 29 , 4113-4116.
    • (2012) Appl. Res. Comput , vol.29 , pp. 4113-4116
    • Zhang, Y.N.1    Qu, L.2    Chen, J.W.3    Liu, J.R.4    Guo, D.S.5
  • 5
    • 84914815903 scopus 로고    scopus 로고
    • Adaptive Local Receptive Field Convolutional Neural Networks for Handwritten Chinese Character Recognition
    • Springer: Berlin/Heidelberg, Germany
    • Chen, L., Wu, C., Fan, W., Sun, J., Naoi, S. Adaptive Local Receptive Field Convolutional Neural Networks for Handwritten Chinese Character Recognition. In Chinese Conference on Pattern Recognition ; Springer: Berlin/Heidelberg, Germany, 2014; pp. 455-463.
    • (2014) Chinese Conference on Pattern Recognition , pp. 455-463
    • Chen, L.1    Wu, C.2    Fan, W.3    Sun, J.4    Naoi, S.5
  • 6
    • 84959019397 scopus 로고    scopus 로고
    • Deep Convolutional Neural Network Classifier for Handwritten Devanagari Character Recognition
    • Springer: New Delhi, India
    • Singh, P., Verma, A., Chaudhari, N.S. Deep Convolutional Neural Network Classifier for Handwritten Devanagari Character Recognition. In Information Systems Design and Intelligent Applications ; Springer: New Delhi, India, 2016.
    • (2016) Information Systems Design and Intelligent Applications
    • Singh, P.1    Verma, A.2    Chaudhari, N.S.3
  • 7
    • 85044162190 scopus 로고    scopus 로고
    • A novel companion objective function for regularization of deepconvolutional neural networks
    • Sun, W., Su, F. A novel companion objective function for regularization of deepconvolutional neural networks. Image Vis. Comput. 2016 , 56 , 110-126.
    • (2016) Image Vis. Comput , vol.56 , pp. 110-126
    • Sun, W.1    Su, F.2
  • 8
    • 85044170063 scopus 로고    scopus 로고
    • DeepNAT: Deep convolutional neural network for segmenting neuroanatomy
    • Wachinger, C., Reuter, M., Klein, T. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy. NeuroImage 2017 .
    • (2017) NeuroImage
    • Wachinger, C.1    Reuter, M.2    Klein, T.3
  • 9
    • 84956678436 scopus 로고    scopus 로고
    • Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
    • Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. Comput. Sci. 2016 , 26 , 357-361.
    • (2016) Comput. Sci , vol.26 , pp. 357-361
    • Chen, L.C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 10
    • 79959936905 scopus 로고    scopus 로고
    • CUDA-enabled implementation of a neural network algorithm for handwritten digit recognition
    • Izotov, P.Y., Kazanskiy, N.L., Golovashkin, D.L., Sukhanov, S.V. CUDA-enabled implementation of a neural network algorithm for handwritten digit recognition. Opt. Mem. Neural Netw. 2011 , 20 , 98-106.
    • (2011) Opt. Mem. Neural Netw , vol.20 , pp. 98-106
    • Izotov, P.Y.1    Kazanskiy, N.L.2    Golovashkin, D.L.3    Sukhanov, S.V.4
  • 11
    • 38049107867 scopus 로고    scopus 로고
    • Training sample selection method for Neural Networks based on Nearest neighbor rule
    • Hao, H.W., Jiang, R.R. Training sample selection method for Neural Networks based on Nearest neighbor rule. Acta Autom. Sin. 2007 , 33 , 1247-1251.
    • (2007) Acta Autom. Sin , vol.33 , pp. 1247-1251
    • Hao, H.W.1    Jiang, R.R.2
  • 12
    • 85011949098 scopus 로고    scopus 로고
    • Radio frequency interference mitigation using deep convolutional neural networks
    • Akeret, J., Chang, C., Lucchi, A., Refregier, A. Radio frequency interference mitigation using deep convolutional neural networks. Astron. Comput. 2017 , 18 , 35-39.
    • (2017) Astron. Comput , vol.18 , pp. 35-39
    • Akeret, J.1    Chang, C.2    Lucchi, A.3    Refregier, A.4
  • 13
    • 84977562383 scopus 로고    scopus 로고
    • Pointwise and uniform approximation by multivariate neural network operators of the max-product type
    • Costarelli, D., Vinti, G. Pointwise and uniform approximation by multivariate neural network operators of the max-product type. Neural Netw. 2016 , 81 , 81-90.
    • (2016) Neural Netw , vol.81 , pp. 81-90
    • Costarelli, D.1    Vinti, G.2
  • 15
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998 , 86 , 2278-2323.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2323
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 16
    • 85029554489 scopus 로고    scopus 로고
    • Review of Convolutional Neural Network
    • Zhou, F.-Y., Jin, L.-P., Dong, J. Review of Convolutional Neural Network. Chin. J. Comput. 2017 , 40 , 1229-1251.
    • (2017) Chin. J. Comput , vol.40 , pp. 1229-1251
    • Zhou, F.-Y.1    Jin, L.-P.2    Dong, J.3
  • 18
    • 85161967549 scopus 로고    scopus 로고
    • Parallelized stochastic gradient descent
    • Neural Information Processing Systems Foundation, Inc.: La Jolla, CA, USA
    • Zinkevich, M., Weimer, M., Li, L., Smola, A.J. Parallelized stochastic gradient descent. In Advances in Neural Information Processing Systems ; Neural Information Processing Systems Foundation, Inc.: La Jolla, CA, USA, 2010; pp. 2595-2603.
    • (2010) Advances in Neural Information Processing Systems , pp. 2595-2603
    • Zinkevich, M.1    Weimer, M.2    Li, L.3    Smola, A.J.4
  • 20
    • 77954368062 scopus 로고    scopus 로고
    • Robust fault-tolerant control for networked control system with packet dropout
    • Hou, Z.H., Fang, H.J. Robust fault-tolerant control for networked control system with packet dropout. J. Syst. Eng. Electron. 2007 , 18 , 76-82.
    • (2007) J. Syst. Eng. Electron , vol.18 , pp. 76-82
    • Hou, Z.H.1    Fang, H.J.2
  • 21
    • 85044100446 scopus 로고    scopus 로고
    • Research on Quantum Neural Network and its Applications Based on Tanh Activation Function
    • Luo, P., Li, H.F. Research on Quantum Neural Network and its Applications Based on Tanh Activation Function. Comput. Digit. Eng. 2012 , 16 , 33-39.
    • (2012) Comput. Digit. Eng , vol.16 , pp. 33-39
    • Luo, P.1    Li, H.F.2
  • 22
    • 85029211934 scopus 로고    scopus 로고
    • A joint residual network with paired ReLUs activation for image super-resolution
    • Tang, Z., Luo, L., Peng, H., Li, S. A joint residual network with paired ReLUs activation for image super-resolution. Neurocomputing 2018 , 273 , 37-46.
    • (2018) Neurocomputing , vol.273 , pp. 37-46
    • Tang, Z.1    Luo, L.2    Peng, H.3    Li, S.4
  • 25
    • 84960391821 scopus 로고    scopus 로고
    • Image Classification Based on Mixed Deep Learning Model Transfer Learning
    • Shi, X.B., Fang, X.J., Zhang, D.Y., Guo, Z.Q. Image Classification Based on Mixed Deep Learning Model Transfer Learning. J. Syst. Simul. 2016 , 28 , 167-173.
    • (2016) J. Syst. Simul , vol.28 , pp. 167-173
    • Shi, X.B.1    Fang, X.J.2    Zhang, D.Y.3    Guo, Z.Q.4
  • 26
    • 84969940648 scopus 로고    scopus 로고
    • DropSample: A new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition
    • Yang, W., Jin, L., Tao, D., Xie, Z., Feng, Z. DropSample: A new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition. Pattern Recognit. 2016 , 58 , 190-203.
    • (2016) Pattern Recognit , vol.58 , pp. 190-203
    • Yang, W.1    Jin, L.2    Tao, D.3    Xie, Z.4    Feng, Z.5
  • 27
    • 84903892105 scopus 로고    scopus 로고
    • Reduced extreme learning machine employing SVM technique
    • Shen, F., Wang, L., Zhang, J. Reduced extreme learning machine employing SVM technique. J. Huazhong Univ. Sci. Technol. 2014 , 42 , 107-110.
    • (2014) J. Huazhong Univ. Sci. Technol , vol.42 , pp. 107-110
    • Shen, F.1    Wang, L.2    Zhang, J.3
  • 28
    • 85044107141 scopus 로고    scopus 로고
    • Improved YOLO feature extraction algorithm and its application to privacy situation detection of social robots
    • Yang, G.-C., Yang, J., Su, Z.D., Chen, Z.-J. Improved YOLO feature extraction algorithm and its application to privacy situation detection of social robots. Acta Autom. Sin. 2018 , 1-12.
    • (2018) Acta Autom. Sin , pp. 1-12
    • Yang, G.-C.1    Yang, J.2    Su, Z.D.3    Chen, Z.-J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.