메뉴 건너뛰기




Volumn 10, Issue 11, 2017, Pages 4909-4918

Surface water mapping by deep learning

Author keywords

Computer vision; convolutional neural networks; landsat; machine learning; remote sensing

Indexed keywords

COMPUTER VISION; CONVOLUTION; DEEP LEARNING; EXPERT SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MAPPING; NEURAL NETWORKS; REMOTE SENSING; SNOW;

EID: 85028462983     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2017.2735443     Document Type: Article
Times cited : (234)

References (40)
  • 1
    • 85010648872 scopus 로고    scopus 로고
    • High-resolution mapping of global surface water and its long-term changes
    • J.-F. Pekel, A. Cottam, N. Gorelick, and A. S. Belward, "High-resolution mapping of global surface water and its long-term changes, " Nature, vol. 540, pp. 418-422, 2016.
    • (2016) Nature , vol.540 , pp. 418-422
    • Pekel, J.-F.1    Cottam, A.2    Gorelick, N.3    Belward, A.S.4
  • 2
    • 84959172600 scopus 로고    scopus 로고
    • A global, highresolution (30-m) inland water body dataset for 2000: First results of a topographic-spectral classification algorithm
    • M. Feng, J. O. Sexton, S. Channan, and J. R. Townshend, "A global, highresolution (30-m) inland water body dataset for 2000: First results of a topographic-spectral classification algorithm, " Int. J. Digit. Earth, vol. 9, no. 2, pp. 113-133, 2016.
    • (2016) Int. J. Digit. Earth , vol.9 , Issue.2 , pp. 113-133
    • Feng, M.1    Sexton, J.O.2    Channan, S.3    Townshend, J.R.4
  • 3
    • 84953638729 scopus 로고    scopus 로고
    • Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia
    • N. Mueller et al., "Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia, " Remote Sens. Environ., vol. 174, pp. 341-352, 2016.
    • (2016) Remote Sens. Environ. , vol.174 , pp. 341-352
    • Mueller, N.1
  • 4
    • 84948767939 scopus 로고    scopus 로고
    • Development of a global90 m water body map using multi-temporal Landsat images
    • D. Yamazaki, M. A. Trigg, and D. Ikeshima, "Development of a global 90 m water body map using multi-temporal Landsat images, " Remote Sens. Environ., vol. 171, pp. 337-351, 2015.
    • (2015) Remote Sens. Environ. , vol.171 , pp. 337-351
    • Yamazaki, D.1    Trigg, M.A.2    Ikeshima, D.3
  • 5
    • 84872246315 scopus 로고    scopus 로고
    • Automated mapping of water bodies using Landsat multispectral data
    • C. Verpoorter et al., "Automated mapping of water bodies using Landsat multispectral data, " Limnol. Oceanogr. Methods, vol. 10, pp. 1037-1050, 2012.
    • (2012) Limnol. Oceanogr. Methods , vol.10 , pp. 1037-1050
    • Verpoorter, C.1
  • 7
    • 84990041912 scopus 로고    scopus 로고
    • Global monitoring of inland water dynamics: State-of-the-art, challenges, and opportunities
    • Cham, Switzerland: Springer
    • A. Karpatne, A. Khandelwal, X. Chen, V. Mithal, J. Faghmous, and V. Kumar, "Global monitoring of inland water dynamics: State-of-the-art, challenges, and opportunities, " in Computational Sustainability. Cham, Switzerland: Springer, 2016, pp. 121-147.
    • (2016) Computational Sustainability , pp. 121-147
    • Karpatne, A.1    Khandelwal, A.2    Chen, X.3    Mithal, V.4    Faghmous, J.5    Kumar, V.6
  • 8
    • 0030136491 scopus 로고    scopus 로고
    • The use of the normalized difference water index (NDWI) in the delineation of open water features
    • S. K. McFeeters, "The use of the normalized difference water index (NDWI) in the delineation of open water features, " Int. J. Remote Sens., vol. 17, no. 7, pp. 1425-1432, 1996.
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.7 , pp. 1425-1432
    • McFeeters, S.K.1
  • 9
    • 33747136902 scopus 로고    scopus 로고
    • Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
    • H. Xu, "Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, " Int. J. Remote Sens., vol. 27, no. 14, pp. 3025-3033, 2006.
    • (2006) Int. J. Remote Sens. , vol.27 , Issue.14 , pp. 3025-3033
    • Xu, H.1
  • 10
    • 84884256674 scopus 로고    scopus 로고
    • Automated water extraction index: A new technique for surface water mapping using Landsat imagery
    • G. L. Feyisa, H. Meilby, R. Fensholt, and S. R. Proud, "Automated water extraction index: A new technique for surface water mapping using Landsat imagery, " Remote Sens. Environ., vol. 140, pp. 23-35, 2014.
    • (2014) Remote Sens. Environ. , vol.140 , pp. 23-35
    • Feyisa, G.L.1    Meilby, H.2    Fensholt, R.3    Proud, S.R.4
  • 11
    • 0026868031 scopus 로고
    • Multispectral classification of landsat-images using neural networks
    • H. Bischof, W. Schneider, and A. J. Pinz, "Multispectral classification of landsat-images using neural networks, " IEEE Trans. Geosci. Remote Sens., vol. 30, no. 3, pp. 482-490, 1992.
    • (1992) IEEE Trans. Geosci. Remote Sens. , vol.30 , Issue.3 , pp. 482-490
    • Bischof, H.1    Schneider, W.2    Pinz, A.J.3
  • 12
    • 84920682125 scopus 로고    scopus 로고
    • Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing
    • M. J. Hughes and D. J. Hayes, "Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing, " Remote Sens., vol. 6, no. 6, pp. 4907-4926, 2014.
    • (2014) Remote Sens. , vol.6 , Issue.6 , pp. 4907-4926
    • Hughes, M.J.1    Hayes, D.J.2
  • 17
  • 18
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic segmentation, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1520-1528.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. , pp. 1520-1528
    • Noh, H.1    Hong, S.2    Han, B.3
  • 19
    • 85033697420 scopus 로고    scopus 로고
    • SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling
    • V. Badrinarayanan, A. Handa, and R. Cipolla, "SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling, " in IEEE Trans. Pattern Anal. Mach. Intell., 2017, doi: 10. 1109/TPAMI. 2016. 2644615.
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell.
    • Badrinarayanan, V.1    Handa, A.2    Cipolla, R.3
  • 23
    • 84906493406 scopus 로고    scopus 로고
    • Microsoft COCO: Common objects in context
    • Cham, Switzerland: Springer
    • T.-Y. Lin et al., "Microsoft COCO: Common objects in context, " in European Conference on Computer Vision. Cham, Switzerland: Springer, 2014, pp. 740-755.
    • (2014) European Conference on Computer Vision , pp. 740-755
    • Lin, T.-Y.1
  • 24
  • 26
    • 84971612769 scopus 로고    scopus 로고
    • Classification and segmentation of satellite orthoimagery using convolutional neural networks
    • M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, "Classification and segmentation of satellite orthoimagery using convolutional neural networks, " Remote Sens., vol. 8, no. 4, 2016, Art. no. 329.
    • (2016) Remote Sens. , vol.8 , Issue.4
    • Längkvist, M.1    Kiselev, A.2    Alirezaie, M.3    Loutfi, A.4
  • 27
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar.
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 30
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Oct.
    • X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, "Vehicle detection in satellite images by hybrid deep convolutional neural networks, " IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1797-1801, Oct. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 31
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • F. Hu, G.-S. Xia, J. Hu, and L. Zhang, "Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery, " Remote Sens., vol. 7, no. 11, pp. 14 680-14 707, 2015.
    • (2015) Remote Sens. , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 33
    • 85012965527 scopus 로고    scopus 로고
    • R-vcanet: A new deep-learning-based hyperspectral image classification method
    • May
    • B. Pan, Z. Shi, and X. Xu, "R-vcanet: A new deep-learning-based hyperspectral image classification method, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 5, pp. 1975-1986, May 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.5 , pp. 1975-1986
    • Pan, B.1    Shi, Z.2    Xu, X.3
  • 36
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift, " in Proc. Int. Conf. Mach. Learning, 2015.
    • (2015) Proc. Int. Conf. Mach. Learning
    • Ioffe, S.1    Szegedy, C.2
  • 37
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • D. Eigen and R. Fergus, "Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2650-2658.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. , pp. 2650-2658
    • Eigen, D.1    Fergus, R.2
  • 39
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026-1034.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.