-
1
-
-
85010648872
-
High-resolution mapping of global surface water and its long-term changes
-
J.-F. Pekel, A. Cottam, N. Gorelick, and A. S. Belward, "High-resolution mapping of global surface water and its long-term changes, " Nature, vol. 540, pp. 418-422, 2016.
-
(2016)
Nature
, vol.540
, pp. 418-422
-
-
Pekel, J.-F.1
Cottam, A.2
Gorelick, N.3
Belward, A.S.4
-
2
-
-
84959172600
-
A global, highresolution (30-m) inland water body dataset for 2000: First results of a topographic-spectral classification algorithm
-
M. Feng, J. O. Sexton, S. Channan, and J. R. Townshend, "A global, highresolution (30-m) inland water body dataset for 2000: First results of a topographic-spectral classification algorithm, " Int. J. Digit. Earth, vol. 9, no. 2, pp. 113-133, 2016.
-
(2016)
Int. J. Digit. Earth
, vol.9
, Issue.2
, pp. 113-133
-
-
Feng, M.1
Sexton, J.O.2
Channan, S.3
Townshend, J.R.4
-
3
-
-
84953638729
-
Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia
-
N. Mueller et al., "Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia, " Remote Sens. Environ., vol. 174, pp. 341-352, 2016.
-
(2016)
Remote Sens. Environ.
, vol.174
, pp. 341-352
-
-
Mueller, N.1
-
4
-
-
84948767939
-
Development of a global90 m water body map using multi-temporal Landsat images
-
D. Yamazaki, M. A. Trigg, and D. Ikeshima, "Development of a global 90 m water body map using multi-temporal Landsat images, " Remote Sens. Environ., vol. 171, pp. 337-351, 2015.
-
(2015)
Remote Sens. Environ.
, vol.171
, pp. 337-351
-
-
Yamazaki, D.1
Trigg, M.A.2
Ikeshima, D.3
-
5
-
-
84872246315
-
Automated mapping of water bodies using Landsat multispectral data
-
C. Verpoorter et al., "Automated mapping of water bodies using Landsat multispectral data, " Limnol. Oceanogr. Methods, vol. 10, pp. 1037-1050, 2012.
-
(2012)
Limnol. Oceanogr. Methods
, vol.10
, pp. 1037-1050
-
-
Verpoorter, C.1
-
6
-
-
84988461021
-
A new global raster water mask at 250 m resolution
-
M. Carroll, J. R. Townshend, C. M. DiMiceli, P. Noojipady, and R. Sohlberg, "A new global raster water mask at 250 m resolution, " Int. J. Digit. Earth, vol. 2, no. 4, pp. 291-308, 2009.
-
(2009)
Int. J. Digit. Earth
, vol.2
, Issue.4
, pp. 291-308
-
-
Carroll, M.1
Townshend, J.R.2
DiMiceli, C.M.3
Noojipady, P.4
Sohlberg, R.5
-
7
-
-
84990041912
-
Global monitoring of inland water dynamics: State-of-the-art, challenges, and opportunities
-
Cham, Switzerland: Springer
-
A. Karpatne, A. Khandelwal, X. Chen, V. Mithal, J. Faghmous, and V. Kumar, "Global monitoring of inland water dynamics: State-of-the-art, challenges, and opportunities, " in Computational Sustainability. Cham, Switzerland: Springer, 2016, pp. 121-147.
-
(2016)
Computational Sustainability
, pp. 121-147
-
-
Karpatne, A.1
Khandelwal, A.2
Chen, X.3
Mithal, V.4
Faghmous, J.5
Kumar, V.6
-
8
-
-
0030136491
-
The use of the normalized difference water index (NDWI) in the delineation of open water features
-
S. K. McFeeters, "The use of the normalized difference water index (NDWI) in the delineation of open water features, " Int. J. Remote Sens., vol. 17, no. 7, pp. 1425-1432, 1996.
-
(1996)
Int. J. Remote Sens.
, vol.17
, Issue.7
, pp. 1425-1432
-
-
McFeeters, S.K.1
-
9
-
-
33747136902
-
Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
-
H. Xu, "Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, " Int. J. Remote Sens., vol. 27, no. 14, pp. 3025-3033, 2006.
-
(2006)
Int. J. Remote Sens.
, vol.27
, Issue.14
, pp. 3025-3033
-
-
Xu, H.1
-
10
-
-
84884256674
-
Automated water extraction index: A new technique for surface water mapping using Landsat imagery
-
G. L. Feyisa, H. Meilby, R. Fensholt, and S. R. Proud, "Automated water extraction index: A new technique for surface water mapping using Landsat imagery, " Remote Sens. Environ., vol. 140, pp. 23-35, 2014.
-
(2014)
Remote Sens. Environ.
, vol.140
, pp. 23-35
-
-
Feyisa, G.L.1
Meilby, H.2
Fensholt, R.3
Proud, S.R.4
-
11
-
-
0026868031
-
Multispectral classification of landsat-images using neural networks
-
H. Bischof, W. Schneider, and A. J. Pinz, "Multispectral classification of landsat-images using neural networks, " IEEE Trans. Geosci. Remote Sens., vol. 30, no. 3, pp. 482-490, 1992.
-
(1992)
IEEE Trans. Geosci. Remote Sens.
, vol.30
, Issue.3
, pp. 482-490
-
-
Bischof, H.1
Schneider, W.2
Pinz, A.J.3
-
12
-
-
84920682125
-
Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing
-
M. J. Hughes and D. J. Hayes, "Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing, " Remote Sens., vol. 6, no. 6, pp. 4907-4926, 2014.
-
(2014)
Remote Sens.
, vol.6
, Issue.6
, pp. 4907-4926
-
-
Hughes, M.J.1
Hayes, D.J.2
-
13
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks, " in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
16
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
17
-
-
85015843890
-
Fully convolutional networks for semantic segmentation
-
E. Shelhamer, J. Long, and T. Darrell, "Fully convolutional networks for semantic segmentation, " in IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640-651, 2017.
-
(2017)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.39
, Issue.4
, pp. 640-651
-
-
Shelhamer, E.1
Long, J.2
Darrell, T.3
-
18
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic segmentation, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1520-1528.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1520-1528
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
19
-
-
85033697420
-
SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling
-
V. Badrinarayanan, A. Handa, and R. Cipolla, "SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling, " in IEEE Trans. Pattern Anal. Mach. Intell., 2017, doi: 10. 1109/TPAMI. 2016. 2644615.
-
(2017)
IEEE Trans. Pattern Anal. Mach. Intell.
-
-
Badrinarayanan, V.1
Handa, A.2
Cipolla, R.3
-
22
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2009, pp. 248-255.
-
(2009)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
23
-
-
84906493406
-
Microsoft COCO: Common objects in context
-
Cham, Switzerland: Springer
-
T.-Y. Lin et al., "Microsoft COCO: Common objects in context, " in European Conference on Computer Vision. Cham, Switzerland: Springer, 2014, pp. 740-755.
-
(2014)
European Conference on Computer Vision
, pp. 740-755
-
-
Lin, T.-Y.1
-
25
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
26
-
-
84971612769
-
Classification and segmentation of satellite orthoimagery using convolutional neural networks
-
M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, "Classification and segmentation of satellite orthoimagery using convolutional neural networks, " Remote Sens., vol. 8, no. 4, 2016, Art. no. 329.
-
(2016)
Remote Sens.
, vol.8
, Issue.4
-
-
Längkvist, M.1
Kiselev, A.2
Alirezaie, M.3
Loutfi, A.4
-
27
-
-
84945898896
-
Scene classification via a gradient boosting random convolutional network framework
-
Mar.
-
F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1793-1802
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
28
-
-
84960959784
-
-
M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, "Land use classification in remote sensing images by convolutional neural networks, " arXiv:1508. 00092, 2015.
-
(2015)
Land Use Classification in Remote Sensing Images by Convolutional Neural Networks
-
-
Castelluccio, M.1
Poggi, G.2
Sansone, C.3
Verdoliva, L.4
-
29
-
-
84961207640
-
Deepsat: A learning framework for satellite imagery
-
S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and R. Nemani, "Deepsat: A learning framework for satellite imagery, " in Proc. 23rd SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst, 2015, Art. no. 37.
-
(2015)
Proc. 23rd SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst
-
-
Basu, S.1
Ganguly, S.2
Mukhopadhyay, S.3
DiBiano, R.4
Karki, M.5
Nemani, R.6
-
30
-
-
84901322878
-
Vehicle detection in satellite images by hybrid deep convolutional neural networks
-
Oct.
-
X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, "Vehicle detection in satellite images by hybrid deep convolutional neural networks, " IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1797-1801, Oct. 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.10
, pp. 1797-1801
-
-
Chen, X.1
Xiang, S.2
Liu, C.-L.3
Pan, C.-H.4
-
31
-
-
84950141946
-
Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
-
F. Hu, G.-S. Xia, J. Hu, and L. Zhang, "Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery, " Remote Sens., vol. 7, no. 11, pp. 14 680-14 707, 2015.
-
(2015)
Remote Sens.
, vol.7
, Issue.11
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.-S.2
Hu, J.3
Zhang, L.4
-
32
-
-
84962569483
-
Deep supervised learning for hyperspectral data classification through convolutional neural networks
-
K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, "Deep supervised learning for hyperspectral data classification through convolutional neural networks, " in Proc. 2015 IEEE Int. Geosci. Remote Sens. Symp., 2015, pp. 4959-4962.
-
(2015)
Proc. 2015 IEEE Int. Geosci. Remote Sens. Symp.
, pp. 4959-4962
-
-
Makantasis, K.1
Karantzalos, K.2
Doulamis, A.3
Doulamis, N.4
-
33
-
-
85012965527
-
R-vcanet: A new deep-learning-based hyperspectral image classification method
-
May
-
B. Pan, Z. Shi, and X. Xu, "R-vcanet: A new deep-learning-based hyperspectral image classification method, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 5, pp. 1975-1986, May 2017.
-
(2017)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.10
, Issue.5
, pp. 1975-1986
-
-
Pan, B.1
Shi, Z.2
Xu, X.3
-
34
-
-
37749044503
-
Towards monitoring land-cover and land-use changes at global scale: The global land use survey
-
G. Gutman, R. Byrnes, M. Covington, C. Justice, S. Franks, and R. Headley, "Towards monitoring land-cover and land-use changes at global scale: The global land use survey, " Photogrammetric Eng. Remote Sens., vol. 64, pp. 6-10, 2005.
-
(2005)
Photogrammetric Eng. Remote Sens.
, vol.64
, pp. 6-10
-
-
Gutman, G.1
Byrnes, R.2
Covington, M.3
Justice, C.4
Franks, S.5
Headley, R.6
-
35
-
-
85035343801
-
Densely connected convolutional networks
-
G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, "Densely connected convolutional networks, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2017.
-
(2017)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
-
-
Huang, G.1
Liu, Z.2
Weinberger, K.Q.3
Van Der Maaten, L.4
-
36
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift, " in Proc. Int. Conf. Mach. Learning, 2015.
-
(2015)
Proc. Int. Conf. Mach. Learning
-
-
Ioffe, S.1
Szegedy, C.2
-
37
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
D. Eigen and R. Fergus, "Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2650-2658.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 2650-2658
-
-
Eigen, D.1
Fergus, R.2
-
39
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026-1034.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
|