메뉴 건너뛰기




Volumn 11, Issue 6, 2015, Pages 1913-1929

Deep learning for extracting water body from landsat imagery

Author keywords

Deep Learning; Feature expansion algorithm; Stacked sparse autoencoders; Unsupervised feature learning; Water body extraction

Indexed keywords

IMAGE RECOGNITION; LEARNING SYSTEMS; PIXELS; REMOTE SENSING; SUPPORT VECTOR MACHINES;

EID: 84958755668     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (27)

References (38)
  • 2
    • 84911368453 scopus 로고    scopus 로고
    • A novel dynamic thresholding and categorizing approach to extract water objects from VHR satellite images
    • Quebec City, Canada
    • C. Senaras, E. Gedik and Y. Yardimci, A novel dynamic thresholding and categorizing approach to extract water objects from VHR satellite images, Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, Canada, 2014.
    • (2014) Geoscience and Remote Sensing Symposium (IGARSS)
    • Senaras, C.1    Gedik, E.2    Yardimci, Y.3
  • 3
    • 84986889043 scopus 로고    scopus 로고
    • An automated method for extracting rivers and lakes from landsat imagery
    • H. Jiang, M. Feng, Y. J. Zhu, N. Lu, J. X. Huang and T. Xiao, An automated method for extracting rivers and lakes from landsat imagery, Remote Sensing, vol.6, no.6, pp.5067-5089, 2014.
    • (2014) Remote Sensing , vol.6 , Issue.6 , pp. 5067-5089
    • Jiang, H.1    Feng, M.2    Zhu, Y.J.3    Lu, N.4    Huang, J.X.5    Xiao, T.6
  • 4
    • 33846218342 scopus 로고    scopus 로고
    • Comparison of water extraction methods in mountainous plateau region from TM image
    • H. F. Chen, J. L. Wang, Z. Chen, L. Yang and W. Xi, Comparison of water extraction methods in mountainous plateau region from TM image, Remote Sensing Technology and Application, vol.19, no.6, pp.479-484, 2004.
    • (2004) Remote Sensing Technology and Application , vol.19 , Issue.6 , pp. 479-484
    • Chen, H.F.1    Wang, J.L.2    Chen, Z.3    Yang, L.4    Xi, W.5
  • 6
    • 0025573508 scopus 로고
    • Knowledge-based classification of an urban area using texture and context information in landsat TM imagery
    • L. Moller-Jensen, Knowledge-based classification of an urban area using texture and context information in landsat TM imagery, Photogrammetric Engineering and Remote Sensing, pp.899-904, 1990.
    • (1990) Photogrammetric Engineering and Remote Sensing , pp. 899-904
    • Moller-Jensen, L.1
  • 7
    • 0242547027 scopus 로고
    • Improvement of the techniques for distinguishing water bodies from TM data
    • J. J. Lu and S. H. Li, Improvement of the techniques for distinguishing water bodies from TM data, Remote Sensing of Environment, vol.7, no.1, pp.17-23, 1992.
    • (1992) Remote Sensing of Environment , vol.7 , Issue.1 , pp. 17-23
    • Lu, J.J.1    Li, S.H.2
  • 8
    • 33747028494 scopus 로고    scopus 로고
    • Semi-automated construction of the Louisiana coastline digital land/water boundary using landsat thematic mapper satellite imagery Louisiana applied oil spill research and development program
    • D. H. Braud andW. Feng, Semi-automated construction of the Louisiana coastline digital land/water boundary using landsat thematic mapper satellite imagery Louisiana applied oil spill research and development program, OSRAPD Technical Report Series, vol.97, no.2, 1998.
    • (1998) OSRAPD Technical Report Series , vol.97 , Issue.2
    • Braud, D.H.1    Feng, W.2
  • 10
    • 0013430202 scopus 로고    scopus 로고
    • Automatically extracting remote sensing information for water bodies
    • Y. Y. Du and C. H. Zhou, Automatically extracting remote sensing information for water bodies, Journal of Remote Sensing, vol.2, no.4, pp.264-269, 1998.
    • (1998) Journal of Remote Sensing , vol.2 , Issue.4 , pp. 264-269
    • Du, Y.Y.1    Zhou, C.H.2
  • 11
    • 80052937669 scopus 로고    scopus 로고
    • The application of multi-band spectral relationship method in water body extraction
    • J. Wang, Y. Zhang and G. Kong, The application of multi-band spectral relationship method in water body extraction, Mine Surveying, vol.4, pp.30-32, 2004.
    • (2004) Mine Surveying , vol.4 , pp. 30-32
    • Wang, J.1    Zhang, Y.2    Kong, G.3
  • 12
    • 0030136491 scopus 로고    scopus 로고
    • The use of normalized difference water index (NDWI) in the delineation of open water features
    • S. K. McFeeters, The use of normalized difference water index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, vol.17, no.7, pp.1425-1432, 1996.
    • (1996) International Journal of Remote Sensing , vol.17 , Issue.7 , pp. 1425-1432
    • McFeeters, S.K.1
  • 13
    • 33846189470 scopus 로고    scopus 로고
    • Fast information extraction of urban built-up land based on the analysis of spectral signature and normalized difference index
    • H. Xu, Fast information extraction of urban built-up land based on the analysis of spectral signature and normalized difference index, Geographical Research, vol.9, no.5, pp.589-595, 2005.
    • (2005) Geographical Research , vol.9 , Issue.5 , pp. 589-595
    • Xu, H.1
  • 14
    • 84969385923 scopus 로고    scopus 로고
    • A method for object-oriented automatic extraction of lakes in the mountain area from remote sensing image
    • J. Shen, L. Yang and X. Chen, A method for object-oriented automatic extraction of lakes in the mountain area from remote sensing image, Remote Sensing for Land & Resources, vol.3, pp.84-87, 2012.
    • (2012) Remote Sensing for Land & Resources , vol.3 , pp. 84-87
    • Shen, J.1    Yang, L.2    Chen, X.3
  • 15
    • 84890852425 scopus 로고    scopus 로고
    • Water extraction method based on ETM image of mountain
    • W. Wang, X. Zhu and Y. Sun, Water extraction method based on ETM image of mountain, Journal of System Simulation, vol.9, no.25, pp.2196-2205, 2013.
    • (2013) Journal of System Simulation , vol.9 , Issue.25 , pp. 2196-2205
    • Wang, W.1    Zhu, X.2    Sun, Y.3
  • 16
    • 0037429468 scopus 로고    scopus 로고
    • Use of normalized difference built-up index in automatically mapping urban areas from TM imagery
    • Y. Zha, J. Gao and S. Ni, Use of normalized difference built-up index in automatically mapping urban areas from TM imagery, International Journal of Remote Sensing, vol.24, no.3, pp.583-594, 2003.
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.3 , pp. 583-594
    • Zha, Y.1    Gao, J.2    Ni, S.3
  • 17
    • 84969385920 scopus 로고    scopus 로고
    • Extraction techniques of urban water bodies based on object-oriented
    • T. Xu, Z. Tan and X. Yan, Extraction techniques of urban water bodies based on object-oriented, Geospatial Information, vol.3, no.8, pp.64-66, 2010.
    • (2010) Geospatial Information , vol.3 , Issue.8 , pp. 64-66
    • Xu, T.1    Tan, Z.2    Yan, X.3
  • 19
    • 84908590748 scopus 로고    scopus 로고
    • Effect of intercalated LDHs on the mechanical and thermal stability of the epoxy/cyanate nanocomposites
    • X. Jian, H. Chen, Z. Y. Xing, T. Fang and L. Y. Yin, Effect of intercalated LDHs on the mechanical and thermal stability of the epoxy/cyanate nanocomposites, Science Technology and Engineering, vol.14, no.18, pp.267-270, 2014.
    • (2014) Science Technology and Engineering , vol.14 , Issue.18 , pp. 267-270
    • Jian, X.1    Chen, H.2    Xing, Z.Y.3    Fang, T.4    Yin, L.Y.5
  • 20
    • 0037934720 scopus 로고    scopus 로고
    • Information fusion for rural land-use classification with high-resolution satellite imagery
    • W. X. Sun, V. Heidt, P. Gong and G. Xu, Information fusion for rural land-use classification with high-resolution satellite imagery, IEEE Trans. Geosci. Remote Sens., vol.41, no.4, pp.883-890, 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.4 , pp. 883-890
    • Sun, W.X.1    Heidt, V.2    Gong, P.3    Xu, G.4
  • 21
    • 82655178425 scopus 로고    scopus 로고
    • A novel algorithmfor land use and land cover classification using RADAR-SAT-2 polarimetric SAR data
    • Z. X. Qi, A. G. O. X. Yeh, X. Li and Z. Lin, A novel algorithmfor land use and land cover classification using RADAR-SAT-2 polarimetric SAR data, Remote Sensing of Environment, pp.21-39, 2012.
    • (2012) Remote Sensing of Environment , pp. 21-39
    • Qi, Z.X.1    Yeh, A.G.O.X.2    Li, X.3    Lin, Z.4
  • 22
    • 37549004391 scopus 로고    scopus 로고
    • Multispectral landuse classification using neural networks and support vector machines: One or the other, or both?
    • B. Dixon and N. Candade, Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? International Journal of Remote Sensing, vol.29, no.4, pp.1185-1206, 2008.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.4 , pp. 1185-1206
    • Dixon, B.1    Candade, N.2
  • 23
    • 34547134220 scopus 로고    scopus 로고
    • Detailed mapping of a salt farm from landsat TM imagery using neural network and maxi-mum likelihood classifiers: A comparison
    • Y. Zhang, J. Gao and J. Wang, Detailed mapping of a salt farm from landsat TM imagery using neural network and maxi-mum likelihood classifiers: A comparison, International Journal of Remote Sensing, vol.28, no.10, pp.2077-2089, 2007.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.10 , pp. 2077-2089
    • Zhang, Y.1    Gao, J.2    Wang, J.3
  • 24
    • 84880362774 scopus 로고    scopus 로고
    • A self-trained semisupervised SVM approach to the remote sensing land cover classification
    • Y. Liu, B. Zhang and L. M. Wang, A self-trained semisupervised SVM approach to the remote sensing land cover classification, Computers & Geosciences, pp.98-107, 2013.
    • (2013) Computers & Geosciences , pp. 98-107
    • Liu, Y.1    Zhang, B.2    Wang, L.M.3
  • 25
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, vol.313, no.5786, pp.504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 26
    • 85032782045 scopus 로고    scopus 로고
    • Deep learning and its applications to signal and information processing [exploratory DSP]
    • D. Yu and L. Deng, Deep learning and its applications to signal and information processing [exploratory DSP], Signal Processing Magazine, vol.28, no.1, pp.145-154, 2011.
    • (2011) Signal Processing Magazine , vol.28 , Issue.1 , pp. 145-154
    • Yu, D.1    Deng, L.2
  • 27
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-A new frontier in artificial intelligence research [research frontier]
    • I. Arel, D. C. Rose and T. P. Karnowski, Deep machine learning-A new frontier in artificial intelligence research [research frontier], Computational Intelligence Magazine, vol.5, no.4, pp.13-18, 2010.
    • (2010) Computational Intelligence Magazine , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 28
    • 84908017576 scopus 로고    scopus 로고
    • Deep learning: New hotspot in machine learning
    • X. Hu and J. Zhu, Deep learning: New hotspot in machine learning, Communications of the CCF, vol.9, no.7, pp.64-69, 2013.
    • (2013) Communications of the CCF , vol.9 , Issue.7 , pp. 64-69
    • Hu, X.1    Zhu, J.2
  • 33
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, The Journal of Machine Learning Research, pp.3371-3408, 2010.
    • (2010) The Journal of Machine Learning Research , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.5
  • 34
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
    • H. C. Shin, M. R. Orton, D. J. Collins, S. J. Doran and M. O. Leach, Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.35, no.8, pp.1930-1943, 2013.
    • (2013) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.35 , Issue.8 , pp. 1930-1943
    • Shin, H.C.1    Orton, M.R.2    Collins, D.J.3    Doran, S.J.4    Leach, M.O.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.