메뉴 건너뛰기




Volumn 10, Issue 3, 2018, Pages

Landsat super-resolution enhancement using convolution neural networks and Sentinel-2 for training

Author keywords

Convolution neural network; Landsat; Sentinel 2; Super resolution

Indexed keywords

CONVOLUTION; DATA FUSION; OPTICAL RESOLVING POWER;

EID: 85044173539     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10030394     Document Type: Article
Times cited : (85)

References (37)
  • 1
    • 84865438182 scopus 로고    scopus 로고
    • Continuous monitoring of forest disturbance using all available Landsat imagery
    • Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75-91
    • (2012) Remote Sens. Environ , vol.122 , pp. 75-91
    • Zhu, Z.1    Woodcock, C.E.2    Olofsson, P.3
  • 2
    • 84893747703 scopus 로고    scopus 로고
    • Continuous change detection and classification of land cover using all available Landsat data
    • Zhu, Z.;Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152-171
    • (2014) Remote Sens. Environ , vol.144 , pp. 152-171
    • Zhu, Z.1    Woodcock, C.E.2
  • 3
    • 85044200103 scopus 로고    scopus 로고
    • Reconstruction of Landsat time series in the presence of irregular and sparse observations: Development and assessment in north-eastern Alberta, Canada
    • Pouliot, D.; Latifovic, R. Reconstruction of Landsat time series in the presence of irregular and sparse observations: Development and assessment in north-eastern Alberta, Canada. Remote Sens. Environ. 2017
    • (2017) Remote Sens. Environ
    • Pouliot, D.1    Latifovic, R.2
  • 4
    • 84907457526 scopus 로고    scopus 로고
    • Improving the Spatial Resolution of Landsat TM/ETM+ Through Fusion with SPOT5
    • Song, H.; Huang, B.; Liu, Q.; Zhang, K. Improving the Spatial Resolution of Landsat TM/ETM+ Through Fusion with SPOT5. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1195-1204
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 1195-1204
    • Song, H.1    Huang, B.2    Liu, Q.3    Zhang, K.4
  • 5
    • 85021049769 scopus 로고    scopus 로고
    • A method of panchromatic image modification for satellite imagery data fusion
    • Grochala, A.; Kedzierski, M. A method of panchromatic image modification for satellite imagery data fusion. Remote Sens. 2017, 9, 639
    • (2017) Remote Sens , vol.9 , pp. 639
    • Grochala, A.1    Kedzierski, M.2
  • 6
    • 85032188743 scopus 로고    scopus 로고
    • Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m ReflectiveWavelength Bands to Sentinel-2 20-m Resolution
    • Li, Z.; Zhang, K.H.; Roy, P.D.; Yan, L.; Huang, H.; Li, J. Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m ReflectiveWavelength Bands to Sentinel-2 20-m Resolution. Remote Sens. 2017, 9, 755
    • (2017) Remote Sens , vol.9 , pp. 755
    • Li, Z.1    Zhang, K.H.2    Roy, P.D.3    Yan, L.4    Huang, H.5    Li, J.6
  • 8
    • 85011818200 scopus 로고    scopus 로고
    • Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques
    • Gilbertson, J.K.; Kemp, J.; van Niekerk, A. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agric. 2017, 134, 151-159
    • (2017) Comput. Electron. Agric , vol.134 , pp. 151-159
    • Gilbertson, J.K.1    Kemp, J.2    van Niekerk, A.3
  • 12
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 19
    • 85017618970 scopus 로고    scopus 로고
    • Ensemble based deep networks for image super-resolution
    • Wang, L.; Huang, Z.; Gong, Y.; Pan, C. Ensemble based deep networks for image super-resolution. Pattern Recognit. 2017, 68, 191-198
    • (2017) Pattern Recognit , vol.68 , pp. 191-198
    • Wang, L.1    Huang, Z.2    Gong, Y.3    Pan, C.4
  • 26
    • 85034792602 scopus 로고    scopus 로고
    • Circa 2010 Land Cover of Canada: Local Optimization Methodology and Product Development
    • Latifovic, R.; Pouliot, D.; Olthof, I. Circa 2010 Land Cover of Canada: Local Optimization Methodology and Product Development. Remote Sens. 2017, 9, 1098
    • (2017) Remote Sens , vol.9 , pp. 1098
    • Latifovic, R.1    Pouliot, D.2    Olthof, I.3
  • 28
    • 84982293141 scopus 로고    scopus 로고
    • A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery
    • Storey, J.; Roy, D.P.; Masek, J.; Gascon, F.; Dwyer, J.; Choate, M. A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. Environ. 2016, 186, 121-122
    • (2016) Remote Sens. Environ , vol.186 , pp. 121-122
    • Storey, J.1    Roy, D.P.2    Masek, J.3    Gascon, F.4    Dwyer, J.5    Choate, M.6
  • 32
    • 0028431032 scopus 로고
    • Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data
    • Lambin, E.F.; Strahlers, A.H. Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens. Environ. 1994, 48, 231-244
    • (1994) Remote Sens. Environ , vol.48 , pp. 231-244
    • Lambin, E.F.1    Strahlers, A.H.2
  • 33
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600-612
    • (2004) IEEE Trans. Image Process , vol.13 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 34
    • 15744383255 scopus 로고    scopus 로고
    • Parametric (modified least squares) and non-parametric (Theil-Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors
    • Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil-Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303-316
    • (2005) Remote Sens. Environ , vol.95 , pp. 303-316
    • Fernandes, R.1    Leblanc, S.G.2
  • 36
    • 33748856157 scopus 로고    scopus 로고
    • Understanding correlation: Factors that affect the size of r
    • Goodwin, L.D.; Leech, N.L. Understanding correlation: Factors that affect the size of r. J. Exp. Educ. 2006, 74, 249-266
    • (2006) J. Exp. Educ , vol.74 , pp. 249-266
    • Goodwin, L.D.1    Leech, N.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.