-
1
-
-
84865438182
-
Continuous monitoring of forest disturbance using all available Landsat imagery
-
Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75-91
-
(2012)
Remote Sens. Environ
, vol.122
, pp. 75-91
-
-
Zhu, Z.1
Woodcock, C.E.2
Olofsson, P.3
-
2
-
-
84893747703
-
Continuous change detection and classification of land cover using all available Landsat data
-
Zhu, Z.;Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152-171
-
(2014)
Remote Sens. Environ
, vol.144
, pp. 152-171
-
-
Zhu, Z.1
Woodcock, C.E.2
-
3
-
-
85044200103
-
Reconstruction of Landsat time series in the presence of irregular and sparse observations: Development and assessment in north-eastern Alberta, Canada
-
Pouliot, D.; Latifovic, R. Reconstruction of Landsat time series in the presence of irregular and sparse observations: Development and assessment in north-eastern Alberta, Canada. Remote Sens. Environ. 2017
-
(2017)
Remote Sens. Environ
-
-
Pouliot, D.1
Latifovic, R.2
-
4
-
-
84907457526
-
Improving the Spatial Resolution of Landsat TM/ETM+ Through Fusion with SPOT5
-
Song, H.; Huang, B.; Liu, Q.; Zhang, K. Improving the Spatial Resolution of Landsat TM/ETM+ Through Fusion with SPOT5. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1195-1204
-
(2014)
IEEE Trans. Geosci. Remote Sens
, vol.53
, pp. 1195-1204
-
-
Song, H.1
Huang, B.2
Liu, Q.3
Zhang, K.4
-
5
-
-
85021049769
-
A method of panchromatic image modification for satellite imagery data fusion
-
Grochala, A.; Kedzierski, M. A method of panchromatic image modification for satellite imagery data fusion. Remote Sens. 2017, 9, 639
-
(2017)
Remote Sens
, vol.9
, pp. 639
-
-
Grochala, A.1
Kedzierski, M.2
-
6
-
-
85032188743
-
Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m ReflectiveWavelength Bands to Sentinel-2 20-m Resolution
-
Li, Z.; Zhang, K.H.; Roy, P.D.; Yan, L.; Huang, H.; Li, J. Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m ReflectiveWavelength Bands to Sentinel-2 20-m Resolution. Remote Sens. 2017, 9, 755
-
(2017)
Remote Sens
, vol.9
, pp. 755
-
-
Li, Z.1
Zhang, K.H.2
Roy, P.D.3
Yan, L.4
Huang, H.5
Li, J.6
-
7
-
-
84993982662
-
Pansharpening by convolutional neural networks
-
Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by convolutional neural networks. Remote Sens. 2016, 8
-
(2016)
Remote Sens
, pp. 8
-
-
Masi, G.1
Cozzolino, D.2
Verdoliva, L.3
Scarpa, G.4
-
8
-
-
85011818200
-
Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques
-
Gilbertson, J.K.; Kemp, J.; van Niekerk, A. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agric. 2017, 134, 151-159
-
(2017)
Comput. Electron. Agric
, vol.134
, pp. 151-159
-
-
Gilbertson, J.K.1
Kemp, J.2
van Niekerk, A.3
-
9
-
-
84957866028
-
A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring
-
Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.T.A.; et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 2016, 8, 70
-
(2016)
Remote Sens
, vol.8
, pp. 70
-
-
Joshi, N.1
Baumann, M.2
Ehammer, A.3
Fensholt, R.4
Grogan, K.5
Hostert, P.6
Jepsen, M.R.7
Kuemmerle, T.8
Meyfroidt, P.9
Mitchard, E.T.A.10
-
10
-
-
85044224516
-
Learning deep convolutional networks for image super resolution
-
Athens, Greece, 11-13 November
-
Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning deep convolutional networks for image super resolution. In Proceedings of the European Conference on Computer Vision, Athens, Greece, 11-13 November 2015
-
(2015)
Proceedings of the European Conference on Computer Vision
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
12
-
-
84950141946
-
Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
-
Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707
-
(2015)
Remote Sens
, vol.7
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.-S.2
Hu, J.3
Zhang, L.4
-
14
-
-
84947041871
-
ImageNet Large Scale Visual Recognition Challenge
-
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211-252
-
(2015)
Int. J. Comput. Vis
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
19
-
-
85017618970
-
Ensemble based deep networks for image super-resolution
-
Wang, L.; Huang, Z.; Gong, Y.; Pan, C. Ensemble based deep networks for image super-resolution. Pattern Recognit. 2017, 68, 191-198
-
(2017)
Pattern Recognit
, vol.68
, pp. 191-198
-
-
Wang, L.1
Huang, Z.2
Gong, Y.3
Pan, C.4
-
20
-
-
84986308391
-
-
Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.;Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. arXiv 2016, arXiv:1609.05158
-
(2016)
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
-
-
Shi, W.1
Caballero, J.2
Huszár, F.3
Totz, J.4
Aitken, A.P.5
Bishop, R.6
Rueckert, D.7
Wang, Z.8
-
21
-
-
85041918798
-
Image Super-Resolution via Deep Recursive Residual Network
-
Honolulu, HI, USA, 21-26 July
-
Tai, Y.; Yang, J.; Liu, X. Image Super-Resolution via Deep Recursive Residual Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 3147-3155
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3147-3155
-
-
Tai, Y.1
Yang, J.2
Liu, X.3
-
24
-
-
85027970290
-
-
Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. arXiv 2017, arXiv:1611.05431
-
(2017)
Aggregated Residual Transformations for Deep Neural Networks
-
-
Xie, S.1
Girshick, R.2
Dollár, P.3
Tu, Z.4
He, K.5
-
25
-
-
85040242092
-
Deep Learning for Multisensor Image Resolution Enhancement
-
Redondo Beach, CA, USA, 7 November
-
Collins, C.B.; Beck, J.M.; Bridges, S.M.; Rushing, J.A.; Graves, S.J. Deep Learning for Multisensor Image Resolution Enhancement. In Proceedings of the 1stWorkshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery, Redondo Beach, CA, USA, 7 November 2017; pp. 37-44
-
(2017)
Proceedings of the 1stWorkshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery
, pp. 37-44
-
-
Collins, C.B.1
Beck, J.M.2
Bridges, S.M.3
Rushing, J.A.4
Graves, S.J.5
-
26
-
-
85034792602
-
Circa 2010 Land Cover of Canada: Local Optimization Methodology and Product Development
-
Latifovic, R.; Pouliot, D.; Olthof, I. Circa 2010 Land Cover of Canada: Local Optimization Methodology and Product Development. Remote Sens. 2017, 9, 1098
-
(2017)
Remote Sens
, vol.9
, pp. 1098
-
-
Latifovic, R.1
Pouliot, D.2
Olthof, I.3
-
28
-
-
84982293141
-
A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery
-
Storey, J.; Roy, D.P.; Masek, J.; Gascon, F.; Dwyer, J.; Choate, M. A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. Environ. 2016, 186, 121-122
-
(2016)
Remote Sens. Environ
, vol.186
, pp. 121-122
-
-
Storey, J.1
Roy, D.P.2
Masek, J.3
Gascon, F.4
Dwyer, J.5
Choate, M.6
-
29
-
-
85044178200
-
-
United States Geological Survey: Reston, VA, USA
-
Storey, J.; Choate, M.; Rengarajan, R.; Lubke, M. Landsat-8/Sentinel-2 Registration Accuracy and Improvement Status; United States Geological Survey: Reston, VA, USA, 2017
-
(2017)
Landsat-8/Sentinel-2 Registration Accuracy and Improvement Status
-
-
Storey, J.1
Choate, M.2
Rengarajan, R.3
Lubke, M.4
-
30
-
-
85044186740
-
-
Natural Resources Canada: Ottawa, ON, Canada
-
Latifovic, R.; Pouliot, D.; Sun, L.; Schwarz, J.; Parkinson, W. Moderate Resolution Time Series Data Management and Analysis: Automated Large Area Mosaicking and Quality Control; Natural Resources Canada: Ottawa, ON, Canada, 2015
-
(2015)
Moderate Resolution Time Series Data Management and Analysis: Automated Large Area Mosaicking and Quality Control
-
-
Latifovic, R.1
Pouliot, D.2
Sun, L.3
Schwarz, J.4
Parkinson, W.5
-
32
-
-
0028431032
-
Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data
-
Lambin, E.F.; Strahlers, A.H. Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens. Environ. 1994, 48, 231-244
-
(1994)
Remote Sens. Environ
, vol.48
, pp. 231-244
-
-
Lambin, E.F.1
Strahlers, A.H.2
-
33
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600-612
-
(2004)
IEEE Trans. Image Process
, vol.13
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
34
-
-
15744383255
-
Parametric (modified least squares) and non-parametric (Theil-Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors
-
Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil-Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303-316
-
(2005)
Remote Sens. Environ
, vol.95
, pp. 303-316
-
-
Fernandes, R.1
Leblanc, S.G.2
-
36
-
-
33748856157
-
Understanding correlation: Factors that affect the size of r
-
Goodwin, L.D.; Leech, N.L. Understanding correlation: Factors that affect the size of r. J. Exp. Educ. 2006, 74, 249-266
-
(2006)
J. Exp. Educ
, vol.74
, pp. 249-266
-
-
Goodwin, L.D.1
Leech, N.L.2
-
37
-
-
85126505086
-
Single Image Super-resolution with a Parameter Economic Residual-like Convolutional Neural Network
-
Reykjavik, Iceland, 4-6 January
-
Liang, Y.; Yang, Z.; Zhang, K.; He, Y.;Wang, J.; Zheng, N. Single Image Super-resolution with a Parameter Economic Residual-like Convolutional Neural Network. In Proceedings of the International Conference on Multimedia Modeling, Reykjavik, Iceland, 4-6 January 2017
-
(2017)
Proceedings of the International Conference on Multimedia Modeling
-
-
Liang, Y.1
Yang, Z.2
Zhang, K.3
He, Y.4
Wang, J.5
Zheng, N.6
|