메뉴 건너뛰기




Volumn 74, Issue , 2017, Pages 58-75

Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications

Author keywords

Autoencoders; Convolutional neural networks; Deep belief networks; Deep learning; Machine learning; Multilayer perceptron; Neuroimaging; Neurologic disorders; Pattern recognition; Psychiatric disorders

Indexed keywords

ALZHEIMER DISEASE; ARTIFICIAL NEURAL NETWORK; ATTENTION DEFICIT DISORDER; CEREBELLAR ATAXIA; COMPUTER ASSISTED TOMOGRAPHY; CONTROLLED STUDY; CONVOLUTIONAL NEURAL NETWORK; DEEP LEARNING; DEEP NEURAL NETWORK; DIFFUSION TENSOR IMAGING; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; MACHINE LEARNING; MEASUREMENT ACCURACY; MEASUREMENT PRECISION; MILD COGNITIVE IMPAIRMENT; NUCLEAR MAGNETIC RESONANCE IMAGING; POSITRON EMISSION TOMOGRAPHY; PSYCHOSIS; REVIEW; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; TEMPORAL LOBE EPILEPSY; MENTAL DISEASE; NEUROIMAGING; NEUROLOGIC DISEASE; SPEECH;

EID: 85009921542     PISSN: 01497634     EISSN: 18737528     Source Type: Journal    
DOI: 10.1016/j.neubiorev.2017.01.002     Document Type: Review
Times cited : (475)

References (91)
  • 1
    • 85009898495 scopus 로고    scopus 로고
    • Understanding intermediate layers using linear classifier probes
    • arXiv preprint arXiv:1610.01644.
    • Alain, G., Bengio, Y., 2016. Understanding intermediate layers using linear classifier probes. arXiv preprint arXiv:1610.01644.
    • (2016)
    • Alain, G.1    Bengio, Y.2
  • 2
    • 2442604536 scopus 로고    scopus 로고
    • The use of overall accuracy to evaluate the validity of screening or diagnostic tests
    • Alberg, A.J., Park, J.W., Hager, B.W., Brock, M.V., Diener‐West, M., The use of overall accuracy to evaluate the validity of screening or diagnostic tests. J. Gen. Intern. Med. 19 (2004), 460–465.
    • (2004) J. Gen. Intern. Med. , vol.19 , pp. 460-465
    • Alberg, A.J.1    Park, J.W.2    Hager, B.W.3    Brock, M.V.4    Diener‐West, M.5
  • 3
    • 84962787673 scopus 로고    scopus 로고
    • Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
    • Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D., Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage, 2016, 137–165.
    • (2016) Neuroimage , pp. 137-165
    • Arbabshirani, M.R.1    Plis, S.2    Sui, J.3    Calhoun, V.D.4
  • 4
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • ® Mach. Learn. 2 (2009), 1–127.
    • (2009) ® Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 7
    • 84876567454 scopus 로고    scopus 로고
    • A plea for neutral comparison studies in computational sciences
    • Boulesteix, A.L., Lauer, S., Eugster, M.J., A plea for neutral comparison studies in computational sciences. PLoS One, 8, 2013, e61562.
    • (2013) PLoS One , vol.8 , pp. e61562
    • Boulesteix, A.L.1    Lauer, S.2    Eugster, M.J.3
  • 9
    • 84897570416 scopus 로고    scopus 로고
    • Alzheimer's Disease Neuroimaging Initiative, 2013. Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 633–640. Springer Berlin Heidelberg.
    • Brosch T., Tam R., Alzheimer's Disease Neuroimaging Initiative, 2013. Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 633–640. Springer Berlin Heidelberg.
    • Brosch, T.1    Tam, R.2
  • 10
    • 84990874686 scopus 로고    scopus 로고
    • Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance
    • Cabral, C., Kambeitz-Ilankovic, L., Kambeitz, J., Calhoun, V.D., Dwyer, D.B., von Saldern, S., Urquijo, M.F., Falkai, P., Koutsouleris, N., Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance. Schizophr. Bull. 42 (2016), S110–S117.
    • (2016) Schizophr. Bull. , vol.42 , pp. S110-S117
    • Cabral, C.1    Kambeitz-Ilankovic, L.2    Kambeitz, J.3    Calhoun, V.D.4    Dwyer, D.B.5    von Saldern, S.6    Urquijo, M.F.7    Falkai, P.8    Koutsouleris, N.9
  • 11
    • 84961972394 scopus 로고    scopus 로고
    • Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness
    • Calhoun, V.D., Sui, J., Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiatry: Cogn. Neurosci.Neuroimag. 1 (2016), 230–244.
    • (2016) Biol. Psychiatry: Cogn. Neurosci.Neuroimag. , vol.1 , pp. 230-244
    • Calhoun, V.D.1    Sui, J.2
  • 12
    • 84951955949 scopus 로고    scopus 로고
    • Nonlinear Feature Transformation and Deep Fusion for Alzheimer's Disease Staging Analysis
    • In: International Workshop on Machine Learning in Medical Imaging, 304–312. Springer International Publishing.
    • Chen, Y., Shi, B., Smith, C.D., Liu, J., 2015. Nonlinear Feature Transformation and Deep Fusion for Alzheimer's Disease Staging Analysis. In: International Workshop on Machine Learning in Medical Imaging, 304–312. Springer International Publishing.
    • (2015)
    • Chen, Y.1    Shi, B.2    Smith, C.D.3    Liu, J.4
  • 13
    • 84960086387 scopus 로고    scopus 로고
    • Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
    • Deshpande, G., Wang, P., Rangaprakash, D., Wilamowski, B., Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans. Cybernet. 45 (2015), 2668–2679.
    • (2015) IEEE Trans. Cybernet. , vol.45 , pp. 2668-2679
    • Deshpande, G.1    Wang, P.2    Rangaprakash, D.3    Wilamowski, B.4
  • 15
    • 33646495490 scopus 로고    scopus 로고
    • Binary tree of SVM: a new fast multiclass training and classification algorithm
    • Fei, B., Liu, J., Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE Trans. Neural Netw. 17 (2006), 696–704.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 696-704
    • Fei, B.1    Liu, J.2
  • 18
    • 85009837643 scopus 로고    scopus 로고
    • Bayesian optimization with unknown constraints
    • arXiv preprint arXiv:1403.5607.
    • Gelbart, M.A., Snoek, J., Adams, R.P., 2014. Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607.
    • (2014)
    • Gelbart, M.A.1    Snoek, J.2    Adams, R.P.3
  • 20
    • 85009863466 scopus 로고    scopus 로고
    • A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks
    • arXiv preprint arXiv:1606.07757.
    • Grün, F., Rupprecht, C., Navab, N., Tombari, F., 2016. A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks. arXiv preprint arXiv:1606.07757.
    • (2016)
    • Grün, F.1    Rupprecht, C.2    Navab, N.3    Tombari, F.4
  • 22
    • 84945961958 scopus 로고    scopus 로고
    • The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification
    • In: International Conference on Brain Informatics and Health, 156–166. Springer International Publishing.
    • Han X., Zhong Y., He L., Philip S.Y., Zhang L., 2015. The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: International Conference on Brain Informatics and Health, 156–166. Springer International Publishing.
    • (2015)
    • Han, X.1    Zhong, Y.2    He, L.3    Philip, S.Y.4    Zhang, L.5
  • 24
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference and Prediction
    • Springer-Verlag New York, NY
    • Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2001, Springer-Verlag, New York, NY.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 25
    • 84958589374 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • arXiv preprint arXiv:1512.03385.
    • He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385.
    • (2015)
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 26
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 27
    • 85009906890 scopus 로고    scopus 로고
    • Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network
    • arXiv preprint arXiv:1607.00556.
    • Hosseini-Asl, E., Gimel'farb, G., El-Baz, A., 2016. Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network. arXiv preprint arXiv:1607.00556.
    • (2016)
    • Hosseini-Asl, E.1    Gimel'farb, G.2    El-Baz, A.3
  • 28
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C.W., Lin, C.J., A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13 (2002), 415–425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 31
    • 38749111465 scopus 로고    scopus 로고
    • The intrinsic functional organization of the brain is altered in autism
    • Kennedy, D.P., Courchesne, E., The intrinsic functional organization of the brain is altered in autism. Neuroimage 39 (2008), 1877–1885.
    • (2008) Neuroimage , vol.39 , pp. 1877-1885
    • Kennedy, D.P.1    Courchesne, E.2
  • 32
    • 84941964814 scopus 로고    scopus 로고
    • Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
    • Kim, J., Calhoun, V.D., Shim, E., Lee, J.H., Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124 (2016), 127–146.
    • (2016) Neuroimage , vol.124 , pp. 127-146
    • Kim, J.1    Calhoun, V.D.2    Shim, E.3    Lee, J.H.4
  • 36
    • 79959957534 scopus 로고    scopus 로고
    • Reduced one-against-all method for multiclass SVM classification
    • Kumar, M.A., Gopal, M., Reduced one-against-all method for multiclass SVM classification. Expert Syst. Appl. 38 (2011), 14238–14248.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 14238-14248
    • Kumar, M.A.1    Gopal, M.2
  • 39
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (1998), 2278–2324.
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 43
  • 45
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch, W., Pitts, W., A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 7 (1943), 115–133.
    • (1943) Bull. Math. Biophys. , vol.7 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 46
    • 84940615071 scopus 로고    scopus 로고
    • Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review
    • Mechelli, A., Prata, D., Kefford, C., Kapur, S., Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review. Drug Discovery Today 20 (2015), 924–927.
    • (2015) Drug Discovery Today , vol.20 , pp. 924-927
    • Mechelli, A.1    Prata, D.2    Kefford, C.3    Kapur, S.4
  • 47
    • 84872254483 scopus 로고    scopus 로고
    • The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
    • Milham, M.P., Fair, D., Mennes, M., Mostofsky, S.H., The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci., 6, 2012, 62.
    • (2012) Front. Syst. Neurosci. , vol.6 , pp. 62
    • Milham, M.P.1    Fair, D.2    Mennes, M.3    Mostofsky, S.H.4
  • 49
    • 84925058025 scopus 로고    scopus 로고
    • Alzheimer's disease neuroimaging initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
    • Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Alzheimer's disease neuroimaging initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Neuroimage 104 (2015), 398–412.
    • (2015) Neuroimage , vol.104 , pp. 398-412
    • Moradi, E.1    Pepe, A.2    Gaser, C.3    Huttunen, H.4    Tohka, J.5
  • 53
    • 84935007247 scopus 로고    scopus 로고
    • Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data
    • Munsell, B.C., Wee, C.Y., Keller, S.S., Weber, B., Elger, C., da Silva, L.A.T., Nesland, T., Styner, M., Shen, D., Bonilha, L., Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. Neuroimage 118 (2015), 219–230.
    • (2015) Neuroimage , vol.118 , pp. 219-230
    • Munsell, B.C.1    Wee, C.Y.2    Keller, S.S.3    Weber, B.4    Elger, C.5    da Silva, L.A.T.6    Nesland, T.7    Styner, M.8    Shen, D.9    Bonilha, L.10
  • 54
    • 84861187769 scopus 로고    scopus 로고
    • Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
    • Nieuwenhuis, M., van Haren, N.E., Pol, H.E.H., Cahn, W., Kahn, R.S., Schnack, H.G., Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage 61 (2012), 606–612.
    • (2012) Neuroimage , vol.61 , pp. 606-612
    • Nieuwenhuis, M.1    van Haren, N.E.2    Pol, H.E.H.3    Cahn, W.4    Kahn, R.S.5    Schnack, H.G.6
  • 55
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight-sharing
    • Nowlan, S.J., Hinton, G.E., Simplifying neural networks by soft weight-sharing. Neural Comput. 4 (1992), 473–493.
    • (1992) Neural Comput. , vol.4 , pp. 473-493
    • Nowlan, S.J.1    Hinton, G.E.2
  • 56
    • 84857000430 scopus 로고    scopus 로고
    • Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
    • Orrù, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G., Mechelli, A., Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36 (2012), 1140–1152.
    • (2012) Neurosci. Biobehav. Rev. , vol.36 , pp. 1140-1152
    • Orrù, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3    Sartori, G.4    Mechelli, A.5
  • 58
    • 84981325983 scopus 로고    scopus 로고
    • Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks
    • arXiv preprint arXiv: 1502.02506.
    • Payan, A., Montana, G., 2015. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv: 1502.02506.
    • (2015)
    • Payan, A.1    Montana, G.2
  • 59
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: a tutorial overview. Machine learning classifiers and fMRI: a tutorial overview
    • Pereira, F., Mitchell, T., Botvinick, M., Machine learning classifiers and fMRI: a tutorial overview. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45 (2009), S199–S209.
    • (2009) Neuroimage , vol.45 , pp. S199-S209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 62
    • 84868255244 scopus 로고    scopus 로고
    • Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication
    • Radua, J., Borgwardt, S., Crescini, A., Mataix-Cols, D., Meyer-Lindenberg, A., McGuire, P.K., Fusar-Poli, P., Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neurosci. Biobehav. Rev. 36 (2012), 2325–2333.
    • (2012) Neurosci. Biobehav. Rev. , vol.36 , pp. 2325-2333
    • Radua, J.1    Borgwardt, S.2    Crescini, A.3    Mataix-Cols, D.4    Meyer-Lindenberg, A.5    McGuire, P.K.6    Fusar-Poli, P.7
  • 63
    • 84959147131 scopus 로고    scopus 로고
    • Evaluating the visualization of what a deep neural network has learned
    • arXiv preprint arXiv:1509.06321.
    • Samek, W., Binder, A., Montavon, G., Bach, S., Müller, K.R., 2015. Evaluating the visualization of what a deep neural network has learned. arXiv preprint arXiv:1509.06321.
    • (2015)
    • Samek, W.1    Binder, A.2    Montavon, G.3    Bach, S.4    Müller, K.R.5
  • 64
    • 85006734427 scopus 로고    scopus 로고
    • Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks
    • arXiv preprint arXiv:1603.08631.
    • Sarraf, S., Tofighi, G., 2016. Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks. arXiv preprint arXiv:1603.08631.
    • (2016)
    • Sarraf, S.1    Tofighi, G.2
  • 65
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 67
    • 84951299658 scopus 로고    scopus 로고
    • Cognition and resting-state functional connectivity in schizophrenia
    • Sheffield, J.M., Barch, D.M., Cognition and resting-state functional connectivity in schizophrenia. Neurosci. Biobehav. Rev. 61 (2016), 108–120.
    • (2016) Neurosci. Biobehav. Rev. , vol.61 , pp. 108-120
    • Sheffield, J.M.1    Barch, D.M.2
  • 68
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • arXiv preprint arXiv:1409.1556.
    • Simonyan, K., Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 69
    • 84905220041 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • arXiv preprint arXiv:1312.6034.
    • Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.
    • (2013)
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 70
    • 84962006941 scopus 로고    scopus 로고
    • Striving for simplicity: the all convolutional net
    • arXiv preprint arXiv:1412.6806.
    • Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806.
    • (2014)
    • Springenberg, J.T.1    Dosovitskiy, A.2    Brox, T.3    Riedmiller, M.4
  • 72
    • 77952888499 scopus 로고    scopus 로고
    • Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
    • Stonnington, C.M., Chu, C., Klöppel, S., Jack, C.R., Ashburner, J., Frackowiak, R.S., Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. Neuroimage 51 (2010), 1405–1413.
    • (2010) Neuroimage , vol.51 , pp. 1405-1413
    • Stonnington, C.M.1    Chu, C.2    Klöppel, S.3    Jack, C.R.4    Ashburner, J.5    Frackowiak, R.S.6
  • 74
    • 84907019192 scopus 로고    scopus 로고
    • Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • Suk, H.I., Lee, S.W., Shen, D., Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101 (2014), 569–582.
    • (2014) Neuroimage , vol.101 , pp. 569-582
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 75
    • 84923814844 scopus 로고    scopus 로고
    • Alzheimer's disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
    • Suk, H.I., Lee, S.W., Shen, D., Alzheimer's disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220 (2015), 841–859.
    • (2015) Brain Struct. Funct. , vol.220 , pp. 841-859
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 76
    • 84971348588 scopus 로고    scopus 로고
    • Alzheimer's Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
    • Suk, H.I., Lee, S.W., Shen, D., Alzheimer's Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis. Brain Struct. Funct., 2015, 1–19.
    • (2015) Brain Struct. Funct. , pp. 1-19
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 77
    • 84957052106 scopus 로고    scopus 로고
    • State-space model with deep learning for functional dynamics estimation in resting-state fMRI
    • Suk, H.I., Wee, C.Y., Lee, S.W., Shen, D., State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage 129 (2016), 292–307.
    • (2016) Neuroimage , vol.129 , pp. 292-307
    • Suk, H.I.1    Wee, C.Y.2    Lee, S.W.3    Shen, D.4
  • 78
    • 84983383396 scopus 로고    scopus 로고
    • Inception-v4, inception-resnet and the impact of residual connections on learning
    • arXiv preprint arXiv:1602.07261.
    • Szegedy, C., Ioffe, S., Vanhoucke, V., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261.
    • (2016)
    • Szegedy, C.1    Ioffe, S.2    Vanhoucke, V.3
  • 79
    • 84893625004 scopus 로고    scopus 로고
    • Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis
    • Tognin, S., Pettersson-Yeo, W., Valli, I., Hutton, C., Woolley, J., Allen, P., McGuire, P., Mechelli, A., Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis. Front. Psychiatry, 4, 2014, 187.
    • (2014) Front. Psychiatry , vol.4 , pp. 187
    • Tognin, S.1    Pettersson-Yeo, W.2    Valli, I.3    Hutton, C.4    Woolley, J.5    Allen, P.6    McGuire, P.7    Mechelli, A.8
  • 80
    • 84975266672 scopus 로고    scopus 로고
    • Identifying individuals at high risk of psychosis: predictive utility of Support Vector Machine using structural and functional MRI data
    • Valli, I., Marquand, A.F., Mechelli, A., Raffin, M., Allen, P., Seal, M.L., McGuire, P., Identifying individuals at high risk of psychosis: predictive utility of Support Vector Machine using structural and functional MRI data. Front. Psychiatry, 7, 2016.
    • (2016) Front. Psychiatry , vol.7
    • Valli, I.1    Marquand, A.F.2    Mechelli, A.3    Raffin, M.4    Allen, P.5    Seal, M.L.6    McGuire, P.7
  • 81
    • 77950628652 scopus 로고    scopus 로고
    • Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia
    • van der Meer, L., Costafreda, S., Aleman, A., David, A.S., Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia. Neurosci. Biobehav. Rev. 34:6 (2010), 935–946.
    • (2010) Neurosci. Biobehav. Rev. , vol.34 , Issue.6 , pp. 935-946
    • van der Meer, L.1    Costafreda, S.2    Aleman, A.3    David, A.S.4
  • 82
    • 85009871859 scopus 로고
    • The Nature of Statistical Learning Theory
    • Springer
    • Vapnik, V.N., The Nature of Statistical Learning Theory. 1995, Springer.
    • (1995)
    • Vapnik, V.N.1
  • 83
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 84
    • 84907997970 scopus 로고    scopus 로고
    • Alzheimer׳ s Disease Neuroimaging Initiative. Prognostic classification of mild cognitive impairment and Alzheimer's disease: MRI independent component analysis
    • Willette, A.A., Calhoun, V.D., Egan, J.M., Kapogiannis, D., Alzheimer׳ s Disease Neuroimaging Initiative. Prognostic classification of mild cognitive impairment and Alzheimer's disease: MRI independent component analysis. Psychiatry Res.: Neuroimag. 224 (2014), 81–88.
    • (2014) Psychiatry Res.: Neuroimag. , vol.224 , pp. 81-88
    • Willette, A.A.1    Calhoun, V.D.2    Egan, J.M.3    Kapogiannis, D.4
  • 85
    • 84952637704 scopus 로고    scopus 로고
    • From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
    • Wolfers, T., Buitelaar, J.K., Beckmann, C.F., Franke, B., Marquand, A.F., From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 57 (2015), 328–349.
    • (2015) Neurosci. Biobehav. Rev. , vol.57 , pp. 328-349
    • Wolfers, T.1    Buitelaar, J.K.2    Beckmann, C.F.3    Franke, B.4    Marquand, A.F.5
  • 87
    • 84959091021 scopus 로고    scopus 로고
    • Understanding neural networks through deep visualization
    • arXiv preprint arXiv:1506.06579.
    • Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579.
    • (2015)
    • Yosinski, J.1    Clune, J.2    Nguyen, A.3    Fuchs, T.4    Lipson, H.5
  • 89
    • 84885164024 scopus 로고    scopus 로고
    • Towards the identification of imaging biomarkers in schizophrenia: using multivariate pattern classification at a single-subject level
    • Zarogianni, E., Moorhead, T.W., Lawrie, S.M., Towards the identification of imaging biomarkers in schizophrenia: using multivariate pattern classification at a single-subject level. NeuroImage: Clin. 3 (2013), 279–289.
    • (2013) NeuroImage: Clin. , vol.3 , pp. 279-289
    • Zarogianni, E.1    Moorhead, T.W.2    Lawrie, S.M.3
  • 90
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • In European Conference on Computer Vision, 818–833. Springer International Publishing.
    • Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In European Conference on Computer Vision, 818–833. Springer International Publishing.
    • (2014)
    • Zeiler, M.D.1    Fergus, R.2
  • 91
    • 84863351725 scopus 로고    scopus 로고
    • Alzheimer's Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
    • Zhang, D., Shen, D., Alzheimer's Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One, 7, 2012, e33182.
    • (2012) PLoS One , vol.7 , pp. e33182
    • Zhang, D.1    Shen, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.