-
1
-
-
85009898495
-
Understanding intermediate layers using linear classifier probes
-
arXiv preprint arXiv:1610.01644.
-
Alain, G., Bengio, Y., 2016. Understanding intermediate layers using linear classifier probes. arXiv preprint arXiv:1610.01644.
-
(2016)
-
-
Alain, G.1
Bengio, Y.2
-
2
-
-
2442604536
-
The use of overall accuracy to evaluate the validity of screening or diagnostic tests
-
Alberg, A.J., Park, J.W., Hager, B.W., Brock, M.V., Diener‐West, M., The use of overall accuracy to evaluate the validity of screening or diagnostic tests. J. Gen. Intern. Med. 19 (2004), 460–465.
-
(2004)
J. Gen. Intern. Med.
, vol.19
, pp. 460-465
-
-
Alberg, A.J.1
Park, J.W.2
Hager, B.W.3
Brock, M.V.4
Diener‐West, M.5
-
3
-
-
84962787673
-
Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
-
Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D., Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage, 2016, 137–165.
-
(2016)
Neuroimage
, pp. 137-165
-
-
Arbabshirani, M.R.1
Plis, S.2
Sui, J.3
Calhoun, V.D.4
-
4
-
-
69349090197
-
Learning deep architectures for AI
-
® Mach. Learn. 2 (2009), 1–127.
-
(2009)
® Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
5
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B., Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst., 2011, 2546–2554.
-
(2011)
Adv. Neural Inf. Process. Syst.
, pp. 2546-2554
-
-
Bergstra, J.S.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
6
-
-
77649218601
-
Toward discovery science of human brain function
-
Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M., Beckmann, C.F., Adelstein, J.S., Buckner, R.L., Colcombe, S., Dogonowski, A.M., Ernst, M., Fair, D., Hampson, M., Hoptman, M.J., Hyde, J.S., Kiviniemi, V.J., Kotter, R., Li, S.J., Lin, C.P., Lowe, M.J., Mackay, C., Madden, D.J., Madsen, K.H., Margulies, D.S., Mayberg, H.S., McMahon, K., Monk, C.S., Mostofsky, S.H., Nagel, B.J., Pekar, J.J., Peltier, S.J., Petersen, S.E., Riedl, V., Rombouts, S.A., Rypma, B., Schlaggar, B.L., Schmidt, S., Seidler, R.D., Siegle, G.J., Sorg, C., Teng, G.J., Veijola, J., Villringer, A., Walter, M., Wang, L., Weng, X.C., Whitfield-Gabrieli, S., Williamson, P., Windischberger, C., Zang, Y.F., Zhang, H.Y., Castellanos, F.X., Milham, M.P., Toward discovery science of human brain function. Proc. Natl. Acad. Sci. 107 (2010), 4734–4739.
-
(2010)
Proc. Natl. Acad. Sci.
, vol.107
, pp. 4734-4739
-
-
Biswal, B.B.1
Mennes, M.2
Zuo, X.N.3
Gohel, S.4
Kelly, C.5
Smith, S.M.6
Beckmann, C.F.7
Adelstein, J.S.8
Buckner, R.L.9
Colcombe, S.10
Dogonowski, A.M.11
Ernst, M.12
Fair, D.13
Hampson, M.14
Hoptman, M.J.15
Hyde, J.S.16
Kiviniemi, V.J.17
Kotter, R.18
Li, S.J.19
Lin, C.P.20
Lowe, M.J.21
Mackay, C.22
Madden, D.J.23
Madsen, K.H.24
Margulies, D.S.25
Mayberg, H.S.26
McMahon, K.27
Monk, C.S.28
Mostofsky, S.H.29
Nagel, B.J.30
Pekar, J.J.31
Peltier, S.J.32
Petersen, S.E.33
Riedl, V.34
Rombouts, S.A.35
Rypma, B.36
Schlaggar, B.L.37
Schmidt, S.38
Seidler, R.D.39
Siegle, G.J.40
Sorg, C.41
Teng, G.J.42
Veijola, J.43
Villringer, A.44
Walter, M.45
Wang, L.46
Weng, X.C.47
Whitfield-Gabrieli, S.48
Williamson, P.49
Windischberger, C.50
Zang, Y.F.51
Zhang, H.Y.52
Castellanos, F.X.53
Milham, M.P.54
more..
-
7
-
-
84876567454
-
A plea for neutral comparison studies in computational sciences
-
Boulesteix, A.L., Lauer, S., Eugster, M.J., A plea for neutral comparison studies in computational sciences. PLoS One, 8, 2013, e61562.
-
(2013)
PLoS One
, vol.8
, pp. e61562
-
-
Boulesteix, A.L.1
Lauer, S.2
Eugster, M.J.3
-
8
-
-
78149473669
-
The balanced accuracy and its posterior distribution
-
Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M., The balanced accuracy and its posterior distribution. Proceedings of the IEEE 20th International Conference on Pattern Recognition, 2010, 3121–3124.
-
(2010)
Proceedings of the IEEE 20th International Conference on Pattern Recognition
, pp. 3121-3124
-
-
Brodersen, K.H.1
Ong, C.S.2
Stephan, K.E.3
Buhmann, J.M.4
-
9
-
-
84897570416
-
-
Alzheimer's Disease Neuroimaging Initiative, 2013. Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 633–640. Springer Berlin Heidelberg.
-
Brosch T., Tam R., Alzheimer's Disease Neuroimaging Initiative, 2013. Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 633–640. Springer Berlin Heidelberg.
-
-
-
Brosch, T.1
Tam, R.2
-
10
-
-
84990874686
-
Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance
-
Cabral, C., Kambeitz-Ilankovic, L., Kambeitz, J., Calhoun, V.D., Dwyer, D.B., von Saldern, S., Urquijo, M.F., Falkai, P., Koutsouleris, N., Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance. Schizophr. Bull. 42 (2016), S110–S117.
-
(2016)
Schizophr. Bull.
, vol.42
, pp. S110-S117
-
-
Cabral, C.1
Kambeitz-Ilankovic, L.2
Kambeitz, J.3
Calhoun, V.D.4
Dwyer, D.B.5
von Saldern, S.6
Urquijo, M.F.7
Falkai, P.8
Koutsouleris, N.9
-
11
-
-
84961972394
-
Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness
-
Calhoun, V.D., Sui, J., Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiatry: Cogn. Neurosci.Neuroimag. 1 (2016), 230–244.
-
(2016)
Biol. Psychiatry: Cogn. Neurosci.Neuroimag.
, vol.1
, pp. 230-244
-
-
Calhoun, V.D.1
Sui, J.2
-
12
-
-
84951955949
-
Nonlinear Feature Transformation and Deep Fusion for Alzheimer's Disease Staging Analysis
-
In: International Workshop on Machine Learning in Medical Imaging, 304–312. Springer International Publishing.
-
Chen, Y., Shi, B., Smith, C.D., Liu, J., 2015. Nonlinear Feature Transformation and Deep Fusion for Alzheimer's Disease Staging Analysis. In: International Workshop on Machine Learning in Medical Imaging, 304–312. Springer International Publishing.
-
(2015)
-
-
Chen, Y.1
Shi, B.2
Smith, C.D.3
Liu, J.4
-
13
-
-
84960086387
-
Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
-
Deshpande, G., Wang, P., Rangaprakash, D., Wilamowski, B., Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans. Cybernet. 45 (2015), 2668–2679.
-
(2015)
IEEE Trans. Cybernet.
, vol.45
, pp. 2668-2679
-
-
Deshpande, G.1
Wang, P.2
Rangaprakash, D.3
Wilamowski, B.4
-
14
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T., Long-term recurrent convolutional networks for visual recognition and description. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 2625–2634.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2625-2634
-
-
Donahue, J.1
Anne Hendricks, L.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
15
-
-
33646495490
-
Binary tree of SVM: a new fast multiclass training and classification algorithm
-
Fei, B., Liu, J., Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE Trans. Neural Netw. 17 (2006), 696–704.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, pp. 696-704
-
-
Fei, B.1
Liu, J.2
-
16
-
-
22144469412
-
The human brain is intrinsically organized into dynamic, anticorrelated functional networks
-
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 9673–9678.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 9673-9678
-
-
Fox, M.D.1
Snyder, A.Z.2
Vincent, J.L.3
Corbetta, M.4
Van Essen, D.C.5
Raichle, M.E.6
-
17
-
-
84988859632
-
A deep learning based approach to classification of CT brain images
-
Gao, X.W., Hui, R., A deep learning based approach to classification of CT brain images. Science and Information Conference, London, UK, 2016.
-
(2016)
Science and Information Conference, London, UK
-
-
Gao, X.W.1
Hui, R.2
-
18
-
-
85009837643
-
Bayesian optimization with unknown constraints
-
arXiv preprint arXiv:1403.5607.
-
Gelbart, M.A., Snoek, J., Adams, R.P., 2014. Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607.
-
(2014)
-
-
Gelbart, M.A.1
Snoek, J.2
Adams, R.P.3
-
19
-
-
84892678379
-
Quantitative prediction of individual psychopathology in trauma survivors using resting-state FMRI
-
Gong, Q., Li, L., Du, M., Pettersson-Yeo, W., Crossley, N., Yang, X., Li, J., Huang, X., Mechelli, A., Quantitative prediction of individual psychopathology in trauma survivors using resting-state FMRI. Neuropsychopharmacology 39 (2014), 681–687.
-
(2014)
Neuropsychopharmacology
, vol.39
, pp. 681-687
-
-
Gong, Q.1
Li, L.2
Du, M.3
Pettersson-Yeo, W.4
Crossley, N.5
Yang, X.6
Li, J.7
Huang, X.8
Mechelli, A.9
-
20
-
-
85009863466
-
A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks
-
arXiv preprint arXiv:1606.07757.
-
Grün, F., Rupprecht, C., Navab, N., Tombari, F., 2016. A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks. arXiv preprint arXiv:1606.07757.
-
(2016)
-
-
Grün, F.1
Rupprecht, C.2
Navab, N.3
Tombari, F.4
-
21
-
-
84906978672
-
Natural image bases to represent neuroimaging data
-
Gupta, A., Ayhan, M., Maida, A., Natural image bases to represent neuroimaging data. International Conference on Machine Learning, 2013, 987–994.
-
(2013)
International Conference on Machine Learning
, pp. 987-994
-
-
Gupta, A.1
Ayhan, M.2
Maida, A.3
-
22
-
-
84945961958
-
The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification
-
In: International Conference on Brain Informatics and Health, 156–166. Springer International Publishing.
-
Han X., Zhong Y., He L., Philip S.Y., Zhang L., 2015. The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: International Conference on Brain Informatics and Health, 156–166. Springer International Publishing.
-
(2015)
-
-
Han, X.1
Zhong, Y.2
He, L.3
Philip, S.Y.4
Zhang, L.5
-
23
-
-
85009853883
-
Discrimination of ADHD children based on deep bayesian network
-
Hao, A.J., He, B.L., Yin, C.H., Discrimination of ADHD children based on deep bayesian network. 2015 International Conference on Biomedical Image and Signal Processing, 2015, 1–6.
-
(2015)
2015 International Conference on Biomedical Image and Signal Processing
, pp. 1-6
-
-
Hao, A.J.1
He, B.L.2
Yin, C.H.3
-
24
-
-
0003684449
-
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
Springer-Verlag New York, NY
-
Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2001, Springer-Verlag, New York, NY.
-
(2001)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
25
-
-
84958589374
-
Deep residual learning for image recognition
-
arXiv preprint arXiv:1512.03385.
-
He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385.
-
(2015)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
26
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
27
-
-
85009906890
-
Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network
-
arXiv preprint arXiv:1607.00556.
-
Hosseini-Asl, E., Gimel'farb, G., El-Baz, A., 2016. Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network. arXiv preprint arXiv:1607.00556.
-
(2016)
-
-
Hosseini-Asl, E.1
Gimel'farb, G.2
El-Baz, A.3
-
28
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
Hsu, C.W., Lin, C.J., A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13 (2002), 415–425.
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
-
29
-
-
84981306530
-
Clinical decision support for Alzheimer's disease based on deep learning and brain network
-
Hu, C., Ju, R., Shen, Y., Zhou, P., Li, Q., Clinical decision support for Alzheimer's disease based on deep learning and brain network. Proceedings of the IEEE International Conference on Communications, 2016, 1–6.
-
(2016)
Proceedings of the IEEE International Conference on Communications
, pp. 1-6
-
-
Hu, C.1
Ju, R.2
Shen, Y.3
Zhou, P.4
Li, Q.5
-
30
-
-
84880333792
-
Dynamic functional connectivity: promise, issues, and interpretations
-
Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., Handwerker, D.A., Keilholz, S., Kiviniemi, V., Leopold, D.A., de Pasquale, F., Sporns, O., Walter, M., Chang, C., Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80 (2013), 360–378.
-
(2013)
Neuroimage
, vol.80
, pp. 360-378
-
-
Hutchison, R.M.1
Womelsdorf, T.2
Allen, E.A.3
Bandettini, P.A.4
Calhoun, V.D.5
Corbetta, M.6
Della Penna, S.7
Duyn, J.H.8
Glover, G.H.9
Gonzalez-Castillo, J.10
Handwerker, D.A.11
Keilholz, S.12
Kiviniemi, V.13
Leopold, D.A.14
de Pasquale, F.15
Sporns, O.16
Walter, M.17
Chang, C.18
-
31
-
-
38749111465
-
The intrinsic functional organization of the brain is altered in autism
-
Kennedy, D.P., Courchesne, E., The intrinsic functional organization of the brain is altered in autism. Neuroimage 39 (2008), 1877–1885.
-
(2008)
Neuroimage
, vol.39
, pp. 1877-1885
-
-
Kennedy, D.P.1
Courchesne, E.2
-
32
-
-
84941964814
-
Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
-
Kim, J., Calhoun, V.D., Shim, E., Lee, J.H., Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124 (2016), 127–146.
-
(2016)
Neuroimage
, vol.124
, pp. 127-146
-
-
Kim, J.1
Calhoun, V.D.2
Shim, E.3
Lee, J.H.4
-
33
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
35
-
-
84958544818
-
Discrimination of ADHD based on fMRI data with deep belief network
-
Kuang, D., Guo, X., An, X., Zhao, Y., He, L., Discrimination of ADHD based on fMRI data with deep belief network. International Conference on Intelligent Computing, 2014, 225–232.
-
(2014)
International Conference on Intelligent Computing
, pp. 225-232
-
-
Kuang, D.1
Guo, X.2
An, X.3
Zhao, Y.4
He, L.5
-
36
-
-
79959957534
-
Reduced one-against-all method for multiclass SVM classification
-
Kumar, M.A., Gopal, M., Reduced one-against-all method for multiclass SVM classification. Expert Syst. Appl. 38 (2011), 14238–14248.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 14238-14248
-
-
Kumar, M.A.1
Gopal, M.2
-
37
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y., An empirical evaluation of deep architectures on problems with many factors of variation. Proceedings of the 24th International Conference on Machine Learning, 2007, 473–480.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
38
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., Ng, A., Building high-level features using large scale unsupervised learning. International Conference on Machine Learning, 103, 2012.
-
(2012)
International Conference on Machine Learning
, vol.103
-
-
Le, Q.1
Ranzato, M.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.6
Dean, J.7
Ng, A.8
-
39
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (1998), 2278–2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
40
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
41
-
-
84921673966
-
Robust deep learning for improved classification of AD/MCI patients
-
Li, F., Tran, L., Thung, K.H., Ji, S., Shen, D., Li, J., Robust deep learning for improved classification of AD/MCI patients. International Workshop on Machine Learning in Medical Imaging, 2014, 240–247.
-
(2014)
International Workshop on Machine Learning in Medical Imaging
, pp. 240-247
-
-
Li, F.1
Tran, L.2
Thung, K.H.3
Ji, S.4
Shen, D.5
Li, J.6
-
42
-
-
84920873973
-
Early diagnosis of Alzheimer's Disease with deep learning
-
Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D., Early diagnosis of Alzheimer's Disease with deep learning. IEEE 11th International Symposium on Biomedical Imaging, 2014, 1015–1018.
-
(2014)
IEEE 11th International Symposium on Biomedical Imaging
, pp. 1015-1018
-
-
Liu, S.1
Liu, S.2
Cai, W.3
Pujol, S.4
Kikinis, R.5
Feng, D.6
-
43
-
-
84925851214
-
Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
-
Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., Fulham, M.J., Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. IEEE Trans. Biomed. Eng. 62 (2015), 1132–1140.
-
(2015)
IEEE Trans. Biomed. Eng.
, vol.62
, pp. 1132-1140
-
-
Liu, S.1
Liu, S.2
Cai, W.3
Che, H.4
Pujol, S.5
Kikinis, R.6
Feng, D.7
Fulham, M.J.8
-
44
-
-
84920917092
-
Multi-phase feature representation learning for neurodegenerative disease diagnosis
-
Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.D., Multi-phase feature representation learning for neurodegenerative disease diagnosis. Australasian Conference on Artificial Life and Computational Intelligence, 2015, 350–359.
-
(2015)
Australasian Conference on Artificial Life and Computational Intelligence
, pp. 350-359
-
-
Liu, S.1
Liu, S.2
Cai, W.3
Pujol, S.4
Kikinis, R.5
Feng, D.D.6
-
45
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
McCulloch, W., Pitts, W., A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 7 (1943), 115–133.
-
(1943)
Bull. Math. Biophys.
, vol.7
, pp. 115-133
-
-
McCulloch, W.1
Pitts, W.2
-
46
-
-
84940615071
-
Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review
-
Mechelli, A., Prata, D., Kefford, C., Kapur, S., Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review. Drug Discovery Today 20 (2015), 924–927.
-
(2015)
Drug Discovery Today
, vol.20
, pp. 924-927
-
-
Mechelli, A.1
Prata, D.2
Kefford, C.3
Kapur, S.4
-
47
-
-
84872254483
-
The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
-
Milham, M.P., Fair, D., Mennes, M., Mostofsky, S.H., The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci., 6, 2012, 62.
-
(2012)
Front. Syst. Neurosci.
, vol.6
, pp. 62
-
-
Milham, M.P.1
Fair, D.2
Mennes, M.3
Mostofsky, S.H.4
-
48
-
-
0000029122
-
A simple weight decay can improve generalization
-
Moody, J., Hanson, S., Krogh, A., Hertz, J.A., A simple weight decay can improve generalization. Adv. Neural Inf. Process. Syst. 4 (1995), 950–957.
-
(1995)
Adv. Neural Inf. Process. Syst.
, vol.4
, pp. 950-957
-
-
Moody, J.1
Hanson, S.2
Krogh, A.3
Hertz, J.A.4
-
49
-
-
84925058025
-
Alzheimer's disease neuroimaging initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
-
Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Alzheimer's disease neuroimaging initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Neuroimage 104 (2015), 398–412.
-
(2015)
Neuroimage
, vol.104
, pp. 398-412
-
-
Moradi, E.1
Pepe, A.2
Gaser, C.3
Huttunen, H.4
Tohka, J.5
-
50
-
-
33144484244
-
Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI)
-
Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C.R., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L., Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI). Alzheimer's Dementia 1 (2005), 55–66.
-
(2005)
Alzheimer's Dementia
, vol.1
, pp. 55-66
-
-
Mueller, S.G.1
Weiner, M.W.2
Thal, L.J.3
Petersen, R.C.4
Jack, C.R.5
Jagust, W.6
Trojanowski, J.Q.7
Toga, A.W.8
Beckett, L.9
-
51
-
-
31544443575
-
The Alzheimer's disease neuroimaging initiative
-
Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C.R., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L., The Alzheimer's disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15 (2005), 869–877.
-
(2005)
Neuroimaging Clin. N. Am.
, vol.15
, pp. 869-877
-
-
Mueller, S.G.1
Weiner, M.W.2
Thal, L.J.3
Petersen, R.C.4
Jack, C.R.5
Jagust, W.6
Trojanowski, J.Q.7
Toga, A.W.8
Beckett, L.9
-
52
-
-
84939442400
-
Resting-state functional connectivity in major depressive disorder: a review
-
Mulders, P.C., van Eijndhoven, P.F., Schene, A.H., Beckmann, C.F., Tendolkar, I., Resting-state functional connectivity in major depressive disorder: a review. Neurosci. Biobehav. Rev. 56 (2015), 330–344.
-
(2015)
Neurosci. Biobehav. Rev.
, vol.56
, pp. 330-344
-
-
Mulders, P.C.1
van Eijndhoven, P.F.2
Schene, A.H.3
Beckmann, C.F.4
Tendolkar, I.5
-
53
-
-
84935007247
-
Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data
-
Munsell, B.C., Wee, C.Y., Keller, S.S., Weber, B., Elger, C., da Silva, L.A.T., Nesland, T., Styner, M., Shen, D., Bonilha, L., Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. Neuroimage 118 (2015), 219–230.
-
(2015)
Neuroimage
, vol.118
, pp. 219-230
-
-
Munsell, B.C.1
Wee, C.Y.2
Keller, S.S.3
Weber, B.4
Elger, C.5
da Silva, L.A.T.6
Nesland, T.7
Styner, M.8
Shen, D.9
Bonilha, L.10
-
54
-
-
84861187769
-
Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
-
Nieuwenhuis, M., van Haren, N.E., Pol, H.E.H., Cahn, W., Kahn, R.S., Schnack, H.G., Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage 61 (2012), 606–612.
-
(2012)
Neuroimage
, vol.61
, pp. 606-612
-
-
Nieuwenhuis, M.1
van Haren, N.E.2
Pol, H.E.H.3
Cahn, W.4
Kahn, R.S.5
Schnack, H.G.6
-
55
-
-
0001765492
-
Simplifying neural networks by soft weight-sharing
-
Nowlan, S.J., Hinton, G.E., Simplifying neural networks by soft weight-sharing. Neural Comput. 4 (1992), 473–493.
-
(1992)
Neural Comput.
, vol.4
, pp. 473-493
-
-
Nowlan, S.J.1
Hinton, G.E.2
-
56
-
-
84857000430
-
Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
-
Orrù, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G., Mechelli, A., Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36 (2012), 1140–1152.
-
(2012)
Neurosci. Biobehav. Rev.
, vol.36
, pp. 1140-1152
-
-
Orrù, G.1
Pettersson-Yeo, W.2
Marquand, A.F.3
Sartori, G.4
Mechelli, A.5
-
57
-
-
84923876055
-
Comparing raw data and feature extraction for seizure detection with deep learning methods
-
Page, A., Turner, J.T., Mohsenin, T., Oates, T., Comparing raw data and feature extraction for seizure detection with deep learning methods. International Florida Artificial Intelligence Research Society Conference, 2014.
-
(2014)
International Florida Artificial Intelligence Research Society Conference
-
-
Page, A.1
Turner, J.T.2
Mohsenin, T.3
Oates, T.4
-
58
-
-
84981325983
-
Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks
-
arXiv preprint arXiv: 1502.02506.
-
Payan, A., Montana, G., 2015. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv: 1502.02506.
-
(2015)
-
-
Payan, A.1
Montana, G.2
-
59
-
-
65549168742
-
Machine learning classifiers and fMRI: a tutorial overview. Machine learning classifiers and fMRI: a tutorial overview
-
Pereira, F., Mitchell, T., Botvinick, M., Machine learning classifiers and fMRI: a tutorial overview. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45 (2009), S199–S209.
-
(2009)
Neuroimage
, vol.45
, pp. S199-S209
-
-
Pereira, F.1
Mitchell, T.2
Botvinick, M.3
-
60
-
-
84887412911
-
Using genetic: cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level
-
Pettersson-Yeo, W., Benetti, S., Marquand, A.F., Dell‘Acqua, F., Williams, S.C.R., Allen, P., Prata, D., McGuire, P., Mechelli, A., Using genetic: cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychol. Med. 43 (2013), 2547–2562.
-
(2013)
Psychol. Med.
, vol.43
, pp. 2547-2562
-
-
Pettersson-Yeo, W.1
Benetti, S.2
Marquand, A.F.3
Dell‘Acqua, F.4
Williams, S.C.R.5
Allen, P.6
Prata, D.7
McGuire, P.8
Mechelli, A.9
-
61
-
-
84905900149
-
Deep learning for neuroimaging: a validation study
-
Plis, S.M., Hjelm, D.R., Salakhutdinov, R., Allen, E.A., Bockholt, H.J., Long, J.D., Johnson, H.J., Paulsen, J.S., Turner, J., Calhoun, V.D., Deep learning for neuroimaging: a validation study. Front. Neurosci. 8 (2014), 1–11.
-
(2014)
Front. Neurosci.
, vol.8
, pp. 1-11
-
-
Plis, S.M.1
Hjelm, D.R.2
Salakhutdinov, R.3
Allen, E.A.4
Bockholt, H.J.5
Long, J.D.6
Johnson, H.J.7
Paulsen, J.S.8
Turner, J.9
Calhoun, V.D.10
-
62
-
-
84868255244
-
Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication
-
Radua, J., Borgwardt, S., Crescini, A., Mataix-Cols, D., Meyer-Lindenberg, A., McGuire, P.K., Fusar-Poli, P., Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neurosci. Biobehav. Rev. 36 (2012), 2325–2333.
-
(2012)
Neurosci. Biobehav. Rev.
, vol.36
, pp. 2325-2333
-
-
Radua, J.1
Borgwardt, S.2
Crescini, A.3
Mataix-Cols, D.4
Meyer-Lindenberg, A.5
McGuire, P.K.6
Fusar-Poli, P.7
-
63
-
-
84959147131
-
Evaluating the visualization of what a deep neural network has learned
-
arXiv preprint arXiv:1509.06321.
-
Samek, W., Binder, A., Montavon, G., Bach, S., Müller, K.R., 2015. Evaluating the visualization of what a deep neural network has learned. arXiv preprint arXiv:1509.06321.
-
(2015)
-
-
Samek, W.1
Binder, A.2
Montavon, G.3
Bach, S.4
Müller, K.R.5
-
64
-
-
85006734427
-
Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks
-
arXiv preprint arXiv:1603.08631.
-
Sarraf, S., Tofighi, G., 2016. Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks. arXiv preprint arXiv:1603.08631.
-
(2016)
-
-
Sarraf, S.1
Tofighi, G.2
-
65
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
66
-
-
84876046629
-
Multimodal functional and structural imaging investigations in psychosis research
-
Schultz, C.C., Fusar-Poli, P., Wagner, G., Koch, K., Schachtzabel, C., Gruber, O., Sauer, H., Schlösser, R.G., Multimodal functional and structural imaging investigations in psychosis research. Eur. Arch. Psychiatry Clin. Neurosci. 262 (2012), 97–106.
-
(2012)
Eur. Arch. Psychiatry Clin. Neurosci.
, vol.262
, pp. 97-106
-
-
Schultz, C.C.1
Fusar-Poli, P.2
Wagner, G.3
Koch, K.4
Schachtzabel, C.5
Gruber, O.6
Sauer, H.7
Schlösser, R.G.8
-
67
-
-
84951299658
-
Cognition and resting-state functional connectivity in schizophrenia
-
Sheffield, J.M., Barch, D.M., Cognition and resting-state functional connectivity in schizophrenia. Neurosci. Biobehav. Rev. 61 (2016), 108–120.
-
(2016)
Neurosci. Biobehav. Rev.
, vol.61
, pp. 108-120
-
-
Sheffield, J.M.1
Barch, D.M.2
-
68
-
-
84925410541
-
Very deep convolutional networks for large-scale image recognition
-
arXiv preprint arXiv:1409.1556.
-
Simonyan, K., Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
-
(2014)
-
-
Simonyan, K.1
Zisserman, A.2
-
69
-
-
84905220041
-
Deep inside convolutional networks: Visualising image classification models and saliency maps
-
arXiv preprint arXiv:1312.6034.
-
Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.
-
(2013)
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
70
-
-
84962006941
-
Striving for simplicity: the all convolutional net
-
arXiv preprint arXiv:1412.6806.
-
Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806.
-
(2014)
-
-
Springenberg, J.T.1
Dosovitskiy, A.2
Brox, T.3
Riedmiller, M.4
-
71
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
72
-
-
77952888499
-
Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
-
Stonnington, C.M., Chu, C., Klöppel, S., Jack, C.R., Ashburner, J., Frackowiak, R.S., Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. Neuroimage 51 (2010), 1405–1413.
-
(2010)
Neuroimage
, vol.51
, pp. 1405-1413
-
-
Stonnington, C.M.1
Chu, C.2
Klöppel, S.3
Jack, C.R.4
Ashburner, J.5
Frackowiak, R.S.6
-
74
-
-
84907019192
-
Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
-
Suk, H.I., Lee, S.W., Shen, D., Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101 (2014), 569–582.
-
(2014)
Neuroimage
, vol.101
, pp. 569-582
-
-
Suk, H.I.1
Lee, S.W.2
Shen, D.3
-
75
-
-
84923814844
-
Alzheimer's disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
-
Suk, H.I., Lee, S.W., Shen, D., Alzheimer's disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220 (2015), 841–859.
-
(2015)
Brain Struct. Funct.
, vol.220
, pp. 841-859
-
-
Suk, H.I.1
Lee, S.W.2
Shen, D.3
-
76
-
-
84971348588
-
Alzheimer's Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
-
Suk, H.I., Lee, S.W., Shen, D., Alzheimer's Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis. Brain Struct. Funct., 2015, 1–19.
-
(2015)
Brain Struct. Funct.
, pp. 1-19
-
-
Suk, H.I.1
Lee, S.W.2
Shen, D.3
-
77
-
-
84957052106
-
State-space model with deep learning for functional dynamics estimation in resting-state fMRI
-
Suk, H.I., Wee, C.Y., Lee, S.W., Shen, D., State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage 129 (2016), 292–307.
-
(2016)
Neuroimage
, vol.129
, pp. 292-307
-
-
Suk, H.I.1
Wee, C.Y.2
Lee, S.W.3
Shen, D.4
-
78
-
-
84983383396
-
Inception-v4, inception-resnet and the impact of residual connections on learning
-
arXiv preprint arXiv:1602.07261.
-
Szegedy, C., Ioffe, S., Vanhoucke, V., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261.
-
(2016)
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
-
79
-
-
84893625004
-
Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis
-
Tognin, S., Pettersson-Yeo, W., Valli, I., Hutton, C., Woolley, J., Allen, P., McGuire, P., Mechelli, A., Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis. Front. Psychiatry, 4, 2014, 187.
-
(2014)
Front. Psychiatry
, vol.4
, pp. 187
-
-
Tognin, S.1
Pettersson-Yeo, W.2
Valli, I.3
Hutton, C.4
Woolley, J.5
Allen, P.6
McGuire, P.7
Mechelli, A.8
-
80
-
-
84975266672
-
Identifying individuals at high risk of psychosis: predictive utility of Support Vector Machine using structural and functional MRI data
-
Valli, I., Marquand, A.F., Mechelli, A., Raffin, M., Allen, P., Seal, M.L., McGuire, P., Identifying individuals at high risk of psychosis: predictive utility of Support Vector Machine using structural and functional MRI data. Front. Psychiatry, 7, 2016.
-
(2016)
Front. Psychiatry
, vol.7
-
-
Valli, I.1
Marquand, A.F.2
Mechelli, A.3
Raffin, M.4
Allen, P.5
Seal, M.L.6
McGuire, P.7
-
81
-
-
77950628652
-
Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia
-
van der Meer, L., Costafreda, S., Aleman, A., David, A.S., Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia. Neurosci. Biobehav. Rev. 34:6 (2010), 935–946.
-
(2010)
Neurosci. Biobehav. Rev.
, vol.34
, Issue.6
, pp. 935-946
-
-
van der Meer, L.1
Costafreda, S.2
Aleman, A.3
David, A.S.4
-
82
-
-
85009871859
-
The Nature of Statistical Learning Theory
-
Springer
-
Vapnik, V.N., The Nature of Statistical Learning Theory. 1995, Springer.
-
(1995)
-
-
Vapnik, V.N.1
-
83
-
-
79551480483
-
Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
84
-
-
84907997970
-
Alzheimer׳ s Disease Neuroimaging Initiative. Prognostic classification of mild cognitive impairment and Alzheimer's disease: MRI independent component analysis
-
Willette, A.A., Calhoun, V.D., Egan, J.M., Kapogiannis, D., Alzheimer׳ s Disease Neuroimaging Initiative. Prognostic classification of mild cognitive impairment and Alzheimer's disease: MRI independent component analysis. Psychiatry Res.: Neuroimag. 224 (2014), 81–88.
-
(2014)
Psychiatry Res.: Neuroimag.
, vol.224
, pp. 81-88
-
-
Willette, A.A.1
Calhoun, V.D.2
Egan, J.M.3
Kapogiannis, D.4
-
85
-
-
84952637704
-
From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
-
Wolfers, T., Buitelaar, J.K., Beckmann, C.F., Franke, B., Marquand, A.F., From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 57 (2015), 328–349.
-
(2015)
Neurosci. Biobehav. Rev.
, vol.57
, pp. 328-349
-
-
Wolfers, T.1
Buitelaar, J.K.2
Beckmann, C.F.3
Franke, B.4
Marquand, A.F.5
-
86
-
-
84921724816
-
Deep learning for cerebellar ataxia classification and functional score regression
-
Yang, Z., Zhong, S., Carass, A., Ying, S.H., Prince, J.L., Deep learning for cerebellar ataxia classification and functional score regression. International Workshop on Machine Learning in Medical Imaging, 2014, 68–76.
-
(2014)
International Workshop on Machine Learning in Medical Imaging
, pp. 68-76
-
-
Yang, Z.1
Zhong, S.2
Carass, A.3
Ying, S.H.4
Prince, J.L.5
-
87
-
-
84959091021
-
Understanding neural networks through deep visualization
-
arXiv preprint arXiv:1506.06579.
-
Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579.
-
(2015)
-
-
Yosinski, J.1
Clune, J.2
Nguyen, A.3
Fuchs, T.4
Lipson, H.5
-
88
-
-
33646058864
-
Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states
-
Yung, A.R., Yuen, H.P., McGorry, P.D., Phillips, L.J., Kelly, D., Dell'Olio, M., Francey, S.M., Cosgrave, E.M., Killackey, E., Stanford, C., Godfrey, K., Buckby, J., Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states. Aust. N. Z. J. Psychiatry 39 (2005), 964–971.
-
(2005)
Aust. N. Z. J. Psychiatry
, vol.39
, pp. 964-971
-
-
Yung, A.R.1
Yuen, H.P.2
McGorry, P.D.3
Phillips, L.J.4
Kelly, D.5
Dell'Olio, M.6
Francey, S.M.7
Cosgrave, E.M.8
Killackey, E.9
Stanford, C.10
Godfrey, K.11
Buckby, J.12
-
89
-
-
84885164024
-
Towards the identification of imaging biomarkers in schizophrenia: using multivariate pattern classification at a single-subject level
-
Zarogianni, E., Moorhead, T.W., Lawrie, S.M., Towards the identification of imaging biomarkers in schizophrenia: using multivariate pattern classification at a single-subject level. NeuroImage: Clin. 3 (2013), 279–289.
-
(2013)
NeuroImage: Clin.
, vol.3
, pp. 279-289
-
-
Zarogianni, E.1
Moorhead, T.W.2
Lawrie, S.M.3
-
90
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
In European Conference on Computer Vision, 818–833. Springer International Publishing.
-
Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In European Conference on Computer Vision, 818–833. Springer International Publishing.
-
(2014)
-
-
Zeiler, M.D.1
Fergus, R.2
-
91
-
-
84863351725
-
Alzheimer's Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
-
Zhang, D., Shen, D., Alzheimer's Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One, 7, 2012, e33182.
-
(2012)
PLoS One
, vol.7
, pp. e33182
-
-
Zhang, D.1
Shen, D.2
|