메뉴 건너뛰기




Volumn 16, Issue 1, 2017, Pages

Convolutional Neural Networks for Water Body Extraction from Landsat Imagery

Author keywords

convolutional neural networks; deep learning; landsat imagery; Water body extraction

Indexed keywords

CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; LEARNING SYSTEMS; NEURAL NETWORKS; SPECTRUM ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 85016204952     PISSN: 14690268     EISSN: None     Source Type: Journal    
DOI: 10.1142/S1469026817500018     Document Type: Article
Times cited : (91)

References (29)
  • 1
    • 33846218342 scopus 로고    scopus 로고
    • Comparison of water extraction methods in mountainous plateau region from TM image
    • H. F. Chen, J. L. Wang, Z. Chen, L. Yang and W. J. Xi, Comparison of water extraction methods in mountainous plateau region from TM image, Remote Sens. Technol. Appl. 19(6) (2004) 479-484.
    • (2004) Remote Sens. Technol. Appl. , vol.19 , Issue.6 , pp. 479-484
    • Chen, H.F.1    Wang, J.L.2    Chen, Z.3    Yang, L.4    Xi, W.J.5
  • 2
    • 77953932220 scopus 로고    scopus 로고
    • Extracting water body information with improved model of spectral relationship in a higher mountain area
    • M. H. Zhang, Extracting water body information with improved model of spectral relationship in a higher mountain area, Geogr. Geo-Inf. Sci. 24(2) (2008) 14-16.
    • (2008) Geogr. Geo-Inf. Sci. , vol.24 , Issue.2 , pp. 14-16
    • Zhang, M.H.1
  • 3
    • 78651420395 scopus 로고    scopus 로고
    • A method of small water information automatic extraction from TM remote sensing images
    • S. W. Yang, C. S. Xue, T. Liu and Y. K. Li, A method of small water information automatic extraction from TM remote sensing images, Acta Geod. Cartogr. Sin. 39(6) (2010) 611-617.
    • (2010) Acta Geod. Cartogr. Sin. , vol.39 , Issue.6 , pp. 611-617
    • Yang, S.W.1    Xue, C.S.2    Liu, T.3    Li, Y.K.4
  • 4
    • 0030136491 scopus 로고    scopus 로고
    • The use of the normalized di® erence water index (NDWI) in the delineation of open water feature
    • S. K. McFeeters, The use of the normalized di® erence water index (NDWI) in the delineation of open water feature, Int. J. Remote Sens. 17(7) (1996) 1425-1432.
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.7 , pp. 1425-1432
    • McFeeters, S.K.1
  • 5
    • 33846189470 scopus 로고    scopus 로고
    • A study on information extraction of water body with the modīed normalized di® erence water index(MNDWI
    • H. Q. Xu, A study on information extraction of water body with the modīed normalized di® erence water index(MNDWI), J. Romote Sensing 9(5) (2005) 589-595.
    • (2005) J. Romote Sensing , vol.9 , Issue.5 , pp. 589-595
    • Xu, H.Q.1
  • 6
    • 84922341333 scopus 로고    scopus 로고
    • Research on urban water body extraction using knowledge-based decision tree
    • J. B. Chen, S. X. Liu and C. Y. Wang, Research on urban water body extraction using knowledge-based decision tree, Remote Sens. Inf. 28(1) (2013) 29-33.
    • (2013) Remote Sens. Inf. , vol.28 , Issue.1 , pp. 29-33
    • Chen, J.B.1    Liu, S.X.2    Wang, C.Y.3
  • 8
    • 85016179852 scopus 로고    scopus 로고
    • Water body extracting from TM image based on BPNN
    • W. L. Yang, M. H. Yang and H. X. Qi, Water body extracting from TM image based on BPNN, Sci. Surv. Map. 37(1) (2012) 148-150.
    • (2012) Sci. Surv. Map. , vol.37 , Issue.1 , pp. 148-150
    • Yang, W.L.1    Yang, M.H.2    Qi, H.X.3
  • 9
    • 0033670141 scopus 로고    scopus 로고
    • Water body detection and delineation with Landsat TM data
    • P. S. Frazier and K. J. Page. Water body detection and delineation with Landsat TM data, Photogramm. Eng. Remote Sens. 66(12) (2000) 1461-1468.
    • (2000) Photogramm. Eng. Remote Sens. , vol.66 , Issue.12 , pp. 1461-1468
    • Frazier, P.S.1    Page, K.J.2
  • 10
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313(5786) (2006) 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 11
    • 84885069866 scopus 로고    scopus 로고
    • Deep learning: Yesterday, today, tomorrow
    • K. Yu, L. Jia, Y. Chen and W. Xu, Deep learning: Yesterday, today, tomorrow, J. Comput. Res. Dev. 50(9) (2013) 1799-1804.
    • (2013) J. Comput. Res. Dev. , vol.50 , Issue.9 , pp. 1799-1804
    • Yu, K.1    Jia, L.2    Chen, Y.3    Xu, W.4
  • 14
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • X. Y. Chen, S. M. Xiang, C. L. Liu and C. H. Pan, Vehicle detection in satellite images by hybrid deep convolutional neural networks, IEEE Geosci. Remote Sens. Lett. 11(10) (2014) 1797-1801.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.Y.1    Xiang, S.M.2    Liu, C.L.3    Pan, C.H.4
  • 15
    • 84908054616 scopus 로고    scopus 로고
    • Remote sensing image classīcation based on DBN model
    • Q. Lü, Y. Dou, X. Niu, J. Q. Xu and F. Xia, Remote sensing image classīcation based on DBN model, J. Comput. Res. Dev. 51(9) (2014) 1911-1918.
    • (2014) J. Comput. Res. Dev. , vol.51 , Issue.9 , pp. 1911-1918
    • Lü, Q.1    Dou, Y.2    Niu, X.3    Xu, J.Q.4    Xia, F.5
  • 17
    • 70449311374 scopus 로고
    • Receptive elds of single neurones inthe cats striate cortex
    • D. H. Wiesel and T. N. Hubel, Receptive elds of single neurones inthe cats striate cortex, J. Physiol. 148(3) (1959) 574-591.
    • (1959) J. Physiol. , vol.148 , Issue.3 , pp. 574-591
    • Wiesel, D.H.1    Hubel, T.N.2
  • 18
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio and P. Haner, Gradient-based learning applied to document recognition, Proc. IEEE 86(11) (1998) 2278-2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haner, P.4
  • 26
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classīcation
    • W. Hu, Y. Y. Huang, W. Li, F. Zhang and H. C. Li, Deep convolutional neural networks for hyperspectral image classīcation, J. Sensors 2015 (2015) 1-12.
    • (2015) J. Sensors , vol.2015 , pp. 1-12
    • Hu, W.1    Huang, Y.Y.2    Li, W.3    Zhang, F.4    Li, H.C.5
  • 27
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-spatial classīcation of hyperspectral images using deep convolutional neural networks
    • J. Yue, W. Z. Zhao, S. J. Mao and H. Liu, Spectral-spatial classīcation of hyperspectral images using deep convolutional neural networks, Remote Sens. Lett. 6(6) (2015) 468-477.
    • (2015) Remote Sens. Lett. , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1    Zhao, W.Z.2    Mao, S.J.3    Liu, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.