메뉴 건너뛰기




Volumn 17, Issue 8, 2017, Pages

A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis

Author keywords

DTW; PCA; Spectral clustering; The improved center clustering algorithm; Vessel trajectory clustering

Indexed keywords

AUTOMATION; CLUSTER ANALYSIS; DATA MINING; MATRIX ALGEBRA; MINE TRANSPORTATION; PRINCIPAL COMPONENT ANALYSIS; REDUCTION; TRAJECTORIES; TRANSPORTATION ROUTES;

EID: 85026900965     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s17081792     Document Type: Article
Times cited : (175)

References (74)
  • 1
    • 84880029498 scopus 로고    scopus 로고
    • Vessel pattern knowledge discovery from AIS data a framework for anomaly detection and route prediction
    • Pallotta, G.; Vespe, M.; Bryan, K. Vessel pattern knowledge discovery from AIS data a framework for anomaly detection and route prediction. Entropy 2013, 15, 2218–2245.
    • (2013) Entropy , vol.15 , pp. 2218-2245
    • Pallotta, G.1    Vespe, M.2    Bryan, K.3
  • 3
    • 84907056600 scopus 로고    scopus 로고
    • Waterway performance monitoring with automatic identification system data
    • Mitchell, K.N.; Scully, B. Waterway performance monitoring with automatic identification system data. Transp. Res. Rec. J. Transp. Res. Board. 2014, 2426, 20–26.
    • Transp. Res. Rec. J. Transp. Res. Board. , vol.2014 , pp. 20-26
    • Mitchell, K.N.1    Scully, B.2
  • 4
    • 85014676462 scopus 로고    scopus 로고
    • Study of automatic anomalous behaviour detection techniques for maritime vessels
    • Sidibé, A.; Shu, G. Study of automatic anomalous behaviour detection techniques for maritime vessels. J. Navig. 2017, 70, 847–858.
    • (2017) J. Navig. , vol.70 , pp. 847-858
    • Sidibé, A.1    Shu, G.2
  • 6
    • 84858065082 scopus 로고    scopus 로고
    • Zheng, Y., Zhou, X.F., Eds.; Springer: Berlin, Germany
    • Han, J. Computing with Spatial Trajectories; Zheng, Y., Zhou, X.F., Eds.; Springer: Berlin, Germany, 2011.
    • (2011) Computing with Spatial Trajectories
    • Han, J.1
  • 8
    • 85026921849 scopus 로고    scopus 로고
    • (accessed on 10 April 2017)
    • Satellite AIS-Space-Based Vessel Tracking. Available online: https://www.fleetmon.com/services/satellite-ais/(accessed on 10 April 2017).
    • Satellite Ais-Space-Based Vessel Tracking
  • 9
    • 85026913298 scopus 로고    scopus 로고
    • (accessed on 25 March 2017)
    • Satellite AIS and Terrestrial AIS. Available online: http://www.shipxy.com/(accessed on 25 March 2017).
    • Satellite AIS and Terrestrial AIS
  • 11
    • 84959536004 scopus 로고    scopus 로고
    • A framework for anomaly detection in maritime trajectory behavior
    • Lei, P.R. A framework for anomaly detection in maritime trajectory behavior. Knowl. Inf. Syst. 2016, 47, 189–214.
    • (2016) Knowl. Inf. Syst. , vol.47 , pp. 189-214
    • Lei, P.R.1
  • 13
  • 14
    • 84947080457 scopus 로고    scopus 로고
    • AIS trajectories simplification and threshold determination
    • Zhang, S.K.; Liu, Z.J.; Cai, Y.; Wu, Z.L.; Shi, G.Y. AIS trajectories simplification and threshold determination. J. Navig. 2016, 69, 729–744.
    • (2016) J. Navig. , vol.69 , pp. 729-744
    • Zhang, S.K.1    Liu, Z.J.2    Cai, Y.3    Wu, Z.L.4    Shi, G.Y.5
  • 15
    • 37749047827 scopus 로고    scopus 로고
    • Automatic Identification System (AIS): Data reliability and human error implications
    • Abbas, H.M.; Alan, W.; Philip, B.; Wang, J. Automatic Identification System (AIS): Data reliability and human error implications. J. Navig. 2007, 60, 373–389.
    • (2007) J. Navig , vol.60 , pp. 373-389
    • Abbas, H.M.1    Alan, W.2    Philip, B.3    Wang, J.4
  • 16
    • 37249052728 scopus 로고    scopus 로고
    • Autonomous ship collision avoidance navigation concepts, technologies and techniques
    • Statheros, T.; Howells, G.; Maier, K.M.D. Autonomous ship collision avoidance navigation concepts, technologies and techniques. J. Navig. 2008, 61, 129–142.
    • (2008) J. Navig. , vol.61 , pp. 129-142
    • Statheros, T.1    Howells, G.2    Maier, K.M.D.3
  • 17
    • 77649274912 scopus 로고    scopus 로고
    • Study on collision avoidance in busy waterways by using AIS data
    • Mou, J.M.; Van der Tak, C.; Ligteringen, H. Study on collision avoidance in busy waterways by using AIS data. Ocean Eng. 2010, 37, 483–490.
    • (2010) Ocean Eng. , vol.37 , pp. 483-490
    • Mou, J.M.1    Van Der Tak, C.2    Ligteringen, H.3
  • 19
    • 50149119940 scopus 로고    scopus 로고
    • Probabilistic associative learning of vessel motion patterns at multiple spatial scales for maritime situation awareness
    • Quebec, QC, Canada, 9–12 July
    • Rhodes, B.J.; Bomberger, N.A.; Zandipour, M. Probabilistic associative learning of vessel motion patterns at multiple spatial scales for maritime situation awareness. In Proceedings of the International Conference on Information Fusion, Quebec, QC, Canada, 9–12 July 2007; pp. 1–8.
    • (2007) In Proceedings of the International Conference on Information Fusion , pp. 1-8
    • Rhodes, B.J.1    Bomberger, N.A.2    Zandipour, M.3
  • 21
    • 84889560716 scopus 로고    scopus 로고
    • Anomaly detection in vessel tracks using Bayesian networks
    • Mascaro, S.; Nicholso, A.E.; Korb, K.B. Anomaly detection in vessel tracks using Bayesian networks. Int. J. Approx. Reason. 2014, 55, 84–98.
    • (2014) Int. J. Approx. Reason , vol.55 , pp. 84-98
    • Mascaro, S.1    Nicholso, A.E.2    Korb, K.B.3
  • 25
    • 84954077903 scopus 로고    scopus 로고
    • Quantifying the tracking capability of space-based AIS systems
    • Skauen, A.N. Quantifying the tracking capability of space-based AIS systems. Adv. Space Res. 2016, 57, 527–542.
    • (2016) Adv. Space Res. , vol.57 , pp. 527-542
    • Skauen, A.N.1
  • 26
    • 84910650903 scopus 로고    scopus 로고
    • Context-enhanced vessel prediction based on Ornstein-Uhlenbeck processes using historical AIS traffic patterns: Real-world experimental results
    • Salamanca, Spain, 7–10 July
    • Pallotta, G.; Horn, S.; Braca, P.; Bryan, K. Context-enhanced vessel prediction based on Ornstein-Uhlenbeck processes using historical AIS traffic patterns: Real-world experimental results. In Proceeding of the 17th International Conference on Information Fusion, Salamanca, Spain, 7–10 July 2014; pp. 1–7.
    • (2014) In Proceeding of the 17Th International Conference on Information Fusion , pp. 1-7
    • Pallotta, G.1    Horn, S.2    Braca, P.3    Bryan, K.4
  • 27
    • 33947163010 scopus 로고    scopus 로고
    • Use of the Automatic Identification System (AIS) for maritime domain awareness (MDA)
    • Washington, DC, USA, 17–23 September
    • Tetreault, B.J. Use of the Automatic Identification System (AIS) for maritime domain awareness (MDA). In Proceedings of the MTS (Marine Technology Society) IEEE Oceans, Washington, DC, USA, 17–23 September 2005; pp. 1590–1594.
    • (2005) In Proceedings of the MTS (Marine Technology Society) IEEE Oceans , pp. 1590-1594
    • Tetreault, B.J.1
  • 29
    • 77952331363 scopus 로고    scopus 로고
    • Decision support from genetic algorithms for ship collision avoidance route planning and alerts
    • Tsou, M.C.; Kao, S.L.; Su, C.M. Decision support from genetic algorithms for ship collision avoidance route planning and alerts. J. Navig. 2010, 63, 167–182.
    • (2010) J. Navig. , vol.63 , pp. 167-182
    • Tsou, M.C.1    Kao, S.L.2    Su, C.M.3
  • 30
    • 84982836543 scopus 로고    scopus 로고
    • A trajectory clustering approach based on decision graph and data field for detecting hotspots
    • Zhao, P.; Qin, K.; Ye, X.; Wang, Y.; Chen, Y. A trajectory clustering approach based on decision graph and data field for detecting hotspots. Int. J. Geogr. Inf. Sci. 2016, 31, 1101–1127.
    • (2016) Int. J. Geogr. Inf. Sci. , vol.31 , pp. 1101-1127
    • Zhao, P.1    Qin, K.2    Ye, X.3    Wang, Y.4    Chen, Y.5
  • 31
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 34
    • 33846024749 scopus 로고    scopus 로고
    • ST-DBSCAN: An algorithm for clustering spatial–temporal data
    • BIrant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221.
    • (2007) Data Knowl. Eng. , vol.60 , pp. 208-221
    • Birant, D.1    Kut, A.2
  • 35
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large databases. ACM Sigmod Rec. 1996, 25, 103–114.
    • (1996) ACM Sigmod Rec. , vol.25 , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 36
    • 85014748397 scopus 로고    scopus 로고
    • A Segment-Based Trajectory Similarity Measure in the Urban Transportation Systems
    • Mao, Y.; Zhong, H.; Xiao, X.; Li, X. A Segment-Based Trajectory Similarity Measure in the Urban Transportation Systems. Sensors 2017, 17, 524.
    • (2017) Sensors , vol.17
    • Mao, Y.1    Zhong, H.2    Xiao, X.3    Li, X.4
  • 39
    • 84924110372 scopus 로고    scopus 로고
    • Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates
    • Frandsen, P.B.; Calcott, B.; Mayer, C.; Lanfear, R. Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evol. Biol. 2015, 15, 1–17.
    • (2015) BMC Evol. Biol. , vol.15 , pp. 1-17
    • Frandsen, P.B.1    Calcott, B.2    Mayer, C.3    Lanfear, R.4
  • 40
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatial data mining
    • Wang, W.; Yang, J.; Muntz, R. STING: A statistical information grid approach to spatial data mining. VLDB 1997, 97, 186–195.
    • (1997) VLDB , vol.97 , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 41
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C.; Raftery, A.E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 2002, 97, 611–631.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 42
    • 84946429462 scopus 로고    scopus 로고
    • Automated clustering of trajectory data using a particle swarm optimization
    • Izakian, Z.; Mesgari, M.S.; Abraham, A. Automated clustering of trajectory data using a particle swarm optimization. Comput. Environ. Urban. Syst. 2016, 55, 55–65.
    • (2016) Comput. Environ. Urban. Syst. , vol.55 , pp. 55-65
    • Izakian, Z.1    Mesgari, M.S.2    Abraham, A.3
  • 43
    • 0027150132 scopus 로고
    • A parallel bottom-up clustering algorithm with applications to circuit partitioning in VLSI design
    • Dallas, TX, USA, 14–18 June
    • Cong, J.; Smith, M.L. A parallel bottom-up clustering algorithm with applications to circuit partitioning in VLSI design. In Proceedings of the 30th International Design Automation Conference, Dallas, TX, USA, 14–18 June 1993; pp. 755–760.
    • (1993) In Proceedings of the 30Th International Design Automation Conference , pp. 755-760
    • Cong, J.1    Smith, M.L.2
  • 45
    • 67649390790 scopus 로고    scopus 로고
    • Integrated assessment of energy policies: Decomposing top-down and bottom-up
    • Böhringer, C.; Rutherford, T.F. Integrated assessment of energy policies: decomposing top-down and bottom-up. J. Econ. Dyn. Control. 2009, 33, 1648–1661.
    • (2009) J. Econ. Dyn. Control , vol.33 , pp. 1648-1661
    • Böhringer, C.1    Rutherford, T.F.2
  • 46
    • 0347172110 scopus 로고    scopus 로고
    • OPTICS: Ordering points to identify the clustering structure
    • Ankerst, M.; Breunig, M.M.; kriegel, H.P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. ACM Sigmod Rec. 1999, 28, 49–60.
    • (1999) ACM Sigmod Rec. , vol.28 , pp. 49-60
    • Ankerst, M.1    Breunig, M.M.2    Kriegel, H.P.3    Sander, J.4
  • 47
  • 49
    • 25144476363 scopus 로고    scopus 로고
    • A statistics-based approach to control the quality of subclusters in incremental gravitational clustering
    • Chen, C.Y.; Hwang, S.C.; Oyang, Y.J. A statistics-based approach to control the quality of subclusters in incremental gravitational clustering. Pattern Recognit. 2005, 38, 2256–2269.
    • (2005) Pattern Recognit , vol.38 , pp. 2256-2269
    • Chen, C.Y.1    Hwang, S.C.2    Oyang, Y.J.3
  • 50
    • 85009726386 scopus 로고    scopus 로고
    • Maritime anomaly detection within coastal waters based on vessel trajectory clustering and Naïve Bayes Classifier
    • Zhen, R.; Jin, Y.; Hu, Q.; Shao, Z.; Nikitakos, N. Maritime anomaly detection within coastal waters based on vessel trajectory clustering and Naïve Bayes Classifier. J. Navigation 2017, 70, 648–670.
    • (2017) J. Navigation , vol.70 , pp. 648-670
    • Zhen, R.1    Jin, Y.2    Hu, Q.3    Shao, Z.4    Nikitakos, N.5
  • 53
    • 84961584041 scopus 로고    scopus 로고
    • Review of moving object trajectory clustering algorithms
    • Yuan, G.; Sun, P.; Zhao, J.; Li, D.; Wang, C. A review of moving object trajectory clustering algorithms. Artif. Intell. Rev. 2017, 47, 123–144.
    • (2017) Artif. Intell. Rev. , vol.47 , pp. 123-144
    • Yuan, G.1    Sun, P.2    Zhao, J.3    Li, D.4    Wang, C.A.5
  • 54
    • 84884541998 scopus 로고    scopus 로고
    • Sparse subspace clustering: Algorithm, theory, and applications
    • Elhamifar, E.; Vidal, R. Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2765–2781.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , pp. 2765-2781
    • Elhamifar, E.1    Vidal, R.2
  • 56
    • 33646807766 scopus 로고    scopus 로고
    • A survey of temporal data mining
    • Laxman, S.; Sastry, P.S. A survey of temporal data mining. Sadhana 2006, 31, 173–198.
    • (2006) Sadhana , vol.31 , pp. 173-198
    • Laxman, S.1    Sastry, P.S.2
  • 58
    • 37849187329 scopus 로고    scopus 로고
    • Time-focused clustering of trajectories of moving objects
    • Nanni, M.; Pedreschi, D. Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 2006, 27, 267–289.
    • (2006) J. Intell. Inf. Syst , vol.27 , pp. 267-289
    • Nanni, M.1    Pedreschi, D.2
  • 59
    • 34347382165 scopus 로고    scopus 로고
    • Probabilistic clustering of extratropical cyclones using regression mixture models
    • Gaffney, S.J.; Andrew, W.R.; Padhraic, S.; Ghil, M. Probabilistic clustering of extratropical cyclones using regression mixture models. Clim. Dyn. 2007, 29, 423–440.
    • (2007) Clim. Dyn. , vol.29 , pp. 423-440
    • Gaffney, S.J.1    Andrew, W.R.2    Padhraic, S.3    Ghil, M.4
  • 60
    • 84930486641 scopus 로고    scopus 로고
    • Trajectory clustering by sampling and density
    • Pan, J.C.; Jiang, Q.S.; Shao, Z.P. Trajectory clustering by sampling and density. J. Mar. Sci. Technol. 2014, 48, 74–85.
    • (2014) J. Mar. Sci. Technol. , vol.48 , pp. 74-85
    • Pan, J.C.1    Jiang, Q.S.2    Shao, Z.P.3
  • 63
    • 77949349871 scopus 로고    scopus 로고
    • Traclass: Trajectory classification using hierarchical region-based and trajectory-based clustering. Proc
    • Lee, J.G.; Han, J.; Li, X.; Gonzalez, H. Traclass: Trajectory classification using hierarchical region-based and trajectory-based clustering. Proc. VLDB Endowment 2008, 1, 1081–1094.
    • (2008) VLDB Endowment , vol.1 , pp. 1081-1094
    • Lee, J.G.1    Han, J.2    Li, X.3    Gonzalez, H.4
  • 64
    • 84880066927 scopus 로고    scopus 로고
    • Online clustering for trajectory data stream of moving objects
    • Yu, Y.; Wang, Q.; Wang, X.; Wang, H.; He, J. Online clustering for trajectory data stream of moving objects. Comput. Sci. Inf. Syst. 2013, 10, 1293–1317.
    • (2013) Comput. Sci. Inf. Syst , vol.10 , pp. 1293-1317
    • Yu, Y.1    Wang, Q.2    Wang, X.3    Wang, H.4    He, J.5
  • 65
    • 84903289127 scopus 로고    scopus 로고
    • Clustering by fast search and find of density peaks
    • Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496.
    • (2014) Science , vol.344 , pp. 1492-1496
    • Rodriguez, A.1    Laio, A.2
  • 66
    • 0026065565 scopus 로고
    • Eigenfaces for recognition
    • Turk, M.; Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3, 71–86.
    • (1991) J. Cogn. Neurosci , vol.3 , pp. 71-86
    • Turk, M.1    Pentland, A.2
  • 67
    • 34147174850 scopus 로고    scopus 로고
    • ComParison of similarity measures for trajectory clustering in outdoor surveillance scenes
    • Hong Kong, China, 20–24 August
    • Zhang, Z.; Huang, K.; Tan, T. ComParison of similarity measures for trajectory clustering in outdoor surveillance scenes. In Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, 20–24 August 2006; pp. 1135–1138.
    • (2006) In Proceedings of the 18Th International Conference on Pattern Recognition , pp. 1135-1138
    • Zhang, Z.1    Huang, K.2    Tan, T.3
  • 68
    • 77649335840 scopus 로고    scopus 로고
    • Novel self-tuning feedback controller for active queue management supporting TCP flows
    • Xiong, N.; Vasilakos, A.V.; Yang, L.T.; Wang, C.; Kannane, R.; Chang, C.; Pan, Y. A novel self-tuning feedback controller for active queue management supporting TCP flows. Inf. Sci. 2010, 180, 2249–2263.
    • (2010) Inf. Sci. , vol.180 , pp. 2249-2263
    • Xiong, N.1    Vasilakos, A.V.2    Yang, L.T.3    Wang, C.4    Kannane, R.5    Chang, C.6    Pan, Y.A.7
  • 70
    • 84959559726 scopus 로고    scopus 로고
    • Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm
    • Petitjean, F.; Forestier, G.; Webb, G.I.; Nicholson, A.E.; Chen, Y.P.; Keogh, E. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowl. Inf. Syst. 2016, 47, 1–26.
    • (2016) Knowl. Inf. Syst. , vol.47 , pp. 1-26
    • Petitjean, F.1    Forestier, G.2    Webb, G.I.3    Nicholson, A.E.4    Chen, Y.P.5    Keogh, E.6
  • 71
    • 85008214452 scopus 로고    scopus 로고
    • Trajectory pattern mining via clustering based on similarity function for transportation surveillance
    • Choong, M.Y.; Chin, R.K.Y.; Yeo, K.B.; Tze Kin Teo, K. Trajectory pattern mining via clustering based on similarity function for transportation surveillance. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 1–7.
    • (2016) Int. J. Simul. Syst. Sci. Technol , vol.17 , pp. 1-7
    • Choong, M.Y.1    Chin, R.K.Y.2    Yeo, K.B.3    Tze Kin Teo, K.4
  • 72
    • 85012255126 scopus 로고    scopus 로고
    • A framework for bus trajectory extraction and missing data recovery for data sampled from the internet
    • Tong, C.; Chen, H.; Xuan, Q.; Yang, X. A framework for bus trajectory extraction and missing data recovery for data sampled from the internet. Sensors 2017, 17, 1–28.
    • (2017) Sensors , vol.17 , pp. 1-28
    • Tong, C.1    Chen, H.2    Xuan, Q.3    Yang, X.4
  • 73
    • 67349153313 scopus 로고    scopus 로고
    • Comparative analysis of quality of service and memory USAge for adaptive failure detectors in healthcare systems
    • Xiong, N.; Vasilakos, A.V.; Yang, L.T.; Song, L.; Pan, Y.; kannan, R.; Li, Y. Comparative analysis of quality of service and memory USAge for adaptive failure detectors in healthcare systems. IEEE J. Sel. Areas Commun. 2009, 27, 495–509.
    • (2009) IEEE J. Sel. Areas Commun. , vol.27 , pp. 495-509
    • Xiong, N.1    Vasilakos, A.V.2    Yang, L.T.3    Song, L.4    Pan, Y.5    Kannan, R.6    Li, Y.7
  • 74
    • 84949809590 scopus 로고    scopus 로고
    • Detection and extraction of brain tumor from MRI images using k-Means clustering and watershed algorithms
    • Sharma, Y.; Kaur, P. Detection and extraction of brain tumor from MRI images using k-Means clustering and watershed algorithms. Int. J. Comput. Sci. Trends Technol. 2015, 3, 32–38.
    • (2015) Int. J. Comput. Sci. Trends Technol , vol.3 , pp. 32-38
    • Sharma, Y.1    Kaur, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.