-
1
-
-
84934294672
-
Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine
-
J. Wang, J. Song, M. Chen, Z. Yang, "Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine, " Int. J. Remote Sens., vol. 36, no. 12, pp. 3144-3169, 2015.
-
(2015)
Int. J. Remote Sens.
, vol.36
, Issue.12
, pp. 3144-3169
-
-
Wang, J.1
Song, J.2
Chen, M.3
Yang, Z.4
-
2
-
-
84920176485
-
Detection of buildings in multispectral very high spatial resolution images using the percentage occupancy hit-ormiss transform
-
Oct.
-
K. Stankov and D.-C. He, "Detection of buildings in multispectral very high spatial resolution images using the percentage occupancy hit-ormiss transform, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 10, pp. 4069-4080, Oct. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.10
, pp. 4069-4080
-
-
Stankov, K.1
He, D.-C.2
-
3
-
-
84940765289
-
A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery
-
Oct.
-
L. Zhang, Z. Shi, J. Wu, "A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 10, pp. 4895-4909, Oct. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.10
, pp. 4895-4909
-
-
Zhang, L.1
Shi, Z.2
Wu, J.3
-
4
-
-
84942199172
-
Vehicle detection in remote sensing imagery based on salient information and local shape feature
-
X. Yu and Z. Shi, "Vehicle detection in remote sensing imagery based on salient information and local shape feature, " Opt.-Int. J. Light Electron Opt., vol. 126, no. 20, pp. 2485-2490, 2015.
-
(2015)
Opt.-Int. J. Light Electron Opt.
, vol.126
, Issue.20
, pp. 2485-2490
-
-
Yu, X.1
Shi, Z.2
-
5
-
-
84896388817
-
Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature
-
Aug.
-
Z. Shi, X. Yu, Z. Jiang, B. Li, "Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4511-4523, Aug. 2014.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.8
, pp. 4511-4523
-
-
Shi, Z.1
Yu, X.2
Jiang, Z.3
Li, B.4
-
6
-
-
84975263405
-
Ship detection in spaceborne optical image with SVD networks
-
Oct.
-
Z. Zou and Z. Shi, "Ship detection in spaceborne optical image with SVD networks, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 5832-5845, Oct. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.10
, pp. 5832-5845
-
-
Zou, Z.1
Shi, Z.2
-
7
-
-
84909977972
-
Multi-class geospatial object detection and geographic image classification based on collection of part detectors
-
Dec.
-
G. Cheng, J. Han, P. Zhou, L. Guo, "Multi-class geospatial object detection and geographic image classification based on collection of part detectors, " ISPRS J. Photogramm. Remote Sens., vol. 98, pp. 119-132, Dec. 2014.
-
(2014)
ISPRS J. Photogramm. Remote Sens.
, vol.98
, pp. 119-132
-
-
Cheng, G.1
Han, J.2
Zhou, P.3
Guo, L.4
-
8
-
-
84884268846
-
A new method on inshore ship detection in high-resolution satellite images using shape and context information
-
Sep.
-
G. Liu, Y. Zhang, X. Zheng, X. Sun, K. Fu, H. Wang, "A new method on inshore ship detection in high-resolution satellite images using shape and context information, " IEEE Geosci. Remote Sens. Lett., vol. 11, no. 3, pp. 617-621, Sep. 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.3
, pp. 617-621
-
-
Liu, G.1
Zhang, Y.2
Zheng, X.3
Sun, X.4
Fu, K.5
Wang, H.6
-
9
-
-
84957680637
-
In-shore ship extraction from HR optical remote sensing image via salience structure and GIS information
-
Sep.
-
X. Ren, L. Jiang, X.-A. Tang, "In-shore ship extraction from HR optical remote sensing image via salience structure and GIS information, " in Proc. 9th Int. Symp. Multispectral Image Process. Pattern Recognit. (MIPPR), Sep. 2015, p. 98150U.
-
(2015)
Proc. 9th Int. Symp. Multispectral Image Process. Pattern Recognit. (MIPPR)
, pp. 98150U
-
-
Ren, X.1
Jiang, L.2
Tang, X.-A.3
-
10
-
-
84979536750
-
S-CNN-based ship detection from high-resolution remote sensing images
-
R. Zhang, J. Yao, K. Zhang, C. Feng, J. Zhang, "S-CNN-based ship detection from high-resolution remote sensing images, " in Proc. ISPRS-Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci., 2016, pp. 423-430.
-
(2016)
Proc. ISPRS-Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci.
, pp. 423-430
-
-
Zhang, R.1
Yao, J.2
Zhang, K.3
Feng, C.4
Zhang, J.5
-
11
-
-
84994217941
-
Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
-
Feb.
-
M. Volpi and D. Tuia, "Dense semantic labeling of subdecimeter resolution images with convolutional neural networks, " IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 881-893, Feb. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.2
, pp. 881-893
-
-
Volpi, M.1
Tuia, D.2
-
12
-
-
84940417787
-
Effective semantic pixel labelling with convolutional networks and conditional random fields
-
Jun.
-
S. Paisitkriangkrai et al., "Effective semantic pixel labelling with convolutional networks and conditional random fields, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2015, pp. 36-43.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
, pp. 36-43
-
-
Paisitkriangkrai, S.1
-
13
-
-
85019922802
-
Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network
-
H. Lin, Z. Shi, Z. Zou, "Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network, " Remote Sens., vol. 9, no. 5, p. 480, 2017.
-
(2017)
Remote Sens.
, vol.9
, Issue.5
, pp. 480
-
-
Lin, H.1
Shi, Z.2
Zou, Z.3
-
14
-
-
84986274465
-
Deep residual learning for image recognition
-
Jun.
-
K. He, X. Zhang, S. Ren, J. Sun, "Deep residual learning for image recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
84886598638
-
Saliency detection by multipleinstance learning
-
Apr.
-
Q. Wang, Y. Yuan, P. Yan, X. Li, "Saliency detection by multipleinstance learning, " IEEE Trans. Cybern., vol. 43, no. 2, pp. 660-672, Apr. 2013.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.2
, pp. 660-672
-
-
Wang, Q.1
Yuan, Y.2
Yan, P.3
Li, X.4
-
17
-
-
84977998287
-
Salient band selection for hyperspectral image classification via manifold ranking
-
Jun.
-
Q. Wang, J. Lin, Y. Yuan, "Salient band selection for hyperspectral image classification via manifold ranking, " IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 6, pp. 1279-1289, Jun. 2016.
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.27
, Issue.6
, pp. 1279-1289
-
-
Wang, Q.1
Lin, J.2
Yuan, Y.3
-
18
-
-
84897584440
-
Visual saliency by selective contrast
-
Jul.
-
Q. Wang, Y. Yuan, P. Yan, "Visual saliency by selective contrast, " IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 7, pp. 1150-1155, Jul. 2013.
-
(2013)
IEEE Trans. Circuits Syst. Video Technol.
, vol.23
, Issue.7
, pp. 1150-1155
-
-
Wang, Q.1
Yuan, Y.2
Yan, P.3
-
19
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, G. E. Hinton, "Imagenet classification with deep convolutional neural networks, " in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
21
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines, " in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010, pp. 807-814.
-
(2010)
Proc. 27th Int. Conf. Mach. Learn. (ICML)
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
22
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Jun.
-
J. Long, E. Shelhamer, T. Darrell, "Fully convolutional networks for semantic segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
|