메뉴 건너뛰기




Volumn 178, Issue 4, 2018, Pages R113-R125

SGLT2 inhibitors: Clinical benefits by restoration of normal diurnal metabolism?

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; GLUCAGON; GLUCOSE; GLYCOGEN; INSULIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PROTEIN; SODIUM GLUCOSE COTRANSPORTER 2 INHIBITOR; ANTIDIABETIC AGENT; MTOR PROTEIN, HUMAN; SLC5A2 PROTEIN, HUMAN; SODIUM GLUCOSE COTRANSPORTER 2; TARGET OF RAPAMYCIN KINASE;

EID: 85044723157     PISSN: 08044643     EISSN: 1479683X     Source Type: Journal    
DOI: 10.1530/EJE-17-0832     Document Type: Review
Times cited : (85)

References (84)
  • 4
    • 85019731757 scopus 로고    scopus 로고
    • Lower risk of heart failure and death in patients initiated on SGLT-2 inhibitors versus other glucose-lowering drugs: The CVD-REAL study
    • Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, Norhammar A, Birkeland KI, Jorgensen M, Thuresson M et al. Lower risk of heart failure and death in patients initiated on SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study. Circulation 2017 136 249-259. (https://doi.org/10.1161/ circulationaha.117.029190)
    • (2017) Circulation , vol.136 , pp. 249-259
    • Kosiborod, M.1    Cavender, M.A.2    Fu, A.Z.3    Wilding, J.P.4    Khunti, K.5    Holl, R.W.6    Norhammar, A.7    Birkeland, K.I.8    Jorgensen, M.9    Thuresson, M.10
  • 5
    • 84964773926 scopus 로고    scopus 로고
    • SGLT2 inhibitors and cardiovascular risk: Lessons learned from the EMPA-REG OUTCOME study
    • Abdul-Ghani M, Del Prato S, Chilton R & DeFronzo RA. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care 2016 39 717-725. (https://doi. org/10.2337/dc16-0041)
    • (2016) Diabetes Care , vol.39 , pp. 717-725
    • Abdul-Ghani, M.1    Del Prato, S.2    Chilton, R.3    DeFronzo, R.A.4
  • 7
    • 84964507777 scopus 로고    scopus 로고
    • SGLT2 inhibition and cardiovascular events: Why did EMPA-REG Outcomes surprise and what were the likely mechanisms?
    • Sattar N, McLaren J, Kristensen SL, Preiss D & McMurray JJ. SGLT2 inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 2016 59 1333-1339. (https://doi.org/10.1007/s00125-016-3956-x)
    • (2016) Diabetologia , vol.59 , pp. 1333-1339
    • Sattar, N.1    McLaren, J.2    Kristensen, S.L.3    Preiss, D.4    McMurray, J.J.5
  • 8
    • 84952637177 scopus 로고    scopus 로고
    • EMPA-REG - The 'diuretic hypothesis'
    • McMurray J. EMPA-REG - the 'diuretic hypothesis'. Journal of Diabetes and its Complications 2016 30 3-4. (https://doi.org/10.1016/j. jdiacomp.2015.10.012)
    • (2016) Journal of Diabetes and Its Complications , vol.30 , pp. 3-4
    • McMurray, J.1
  • 9
    • 84951814585 scopus 로고    scopus 로고
    • The EMPA-REG study: What has it told us? A diabetologist's perspective
    • DeFronzo RA. The EMPA-REG study: what has it told us? A diabetologist's perspective. Journal of Diabetes and its Complications 2016 30 1-2. (https://doi.org/10.1016/j.jdiacomp.2015.10.013)
    • (2016) Journal of Diabetes and Its Complications , vol.30 , pp. 1-2
    • DeFronzo, R.A.1
  • 10
    • 84959912495 scopus 로고    scopus 로고
    • EMPA-REG: Glucose excretion and lipid mobilization - Not storage - Saves lives
    • Jorgensen NB, Pedersen J & Vaag AA. EMPA-REG: glucose excretion and lipid mobilization - not storage - saves lives. Journal of Diabetes and its Complications 2016 30 753. (https://doi.org/10.1016/j. jdiacomp.2016.02.015)
    • (2016) Journal of Diabetes and Its Complications , vol.30 , pp. 753
    • Jorgensen, N.B.1    Pedersen, J.2    Vaag, A.A.3
  • 12
    • 84964608804 scopus 로고    scopus 로고
    • Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes
    • Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR & Muscelli E. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 2016 65 1190-1195. (https://doi.org/10.2337/db15-1356)
    • (2016) Diabetes , vol.65 , pp. 1190-1195
    • Ferrannini, E.1    Baldi, S.2    Frascerra, S.3    Astiarraga, B.4    Heise, T.5    Bizzotto, R.6    Mari, A.7    Pieber, T.R.8    Muscelli, E.9
  • 13
    • 84975853831 scopus 로고    scopus 로고
    • CV protection in the EMPA-REG OUTCOME trial: A 'thrifty substrate' hypothesis
    • Ferrannini E, Mark M & Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a 'thrifty substrate' hypothesis. Diabetes Care 2016 39 1108-1114. (https://doi.org/10.2337/dc16-0330)
    • (2016) Diabetes Care , vol.39 , pp. 1108-1114
    • Ferrannini, E.1    Mark, M.2    Mayoux, E.3
  • 14
    • 84975840750 scopus 로고    scopus 로고
    • Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis
    • Mudaliar S, Alloju S & Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care 2016 39 1115-1122. (https://doi.org/10.2337/dc16-0542)
    • (2016) Diabetes Care , vol.39 , pp. 1115-1122
    • Mudaliar, S.1    Alloju, S.2    Henry, R.R.3
  • 17
    • 0033400310 scopus 로고    scopus 로고
    • Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss
    • Kelley DE, Goodpaster B, Wing RR & Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. American Journal of Physiology 1999 277 E1130-E1141. (https://doi.org/10.1152/ajpcell.1999.277.6.C1130)
    • (1999) American Journal of Physiology , vol.277 , pp. E1130-E1141
    • Kelley, D.E.1    Goodpaster, B.2    Wing, R.R.3    Simoneau, J.A.4
  • 18
    • 84924310257 scopus 로고    scopus 로고
    • Metabolic inflexibility: When mitochondrial indecision leads to metabolic gridlock
    • Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 2014 159 1253-1262. (https://doi. org/10.1016/j.cell.2014.11.034)
    • (2014) Cell , vol.159 , pp. 1253-1262
    • Muoio, D.M.1
  • 20
    • 84858020943 scopus 로고    scopus 로고
    • Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin
    • Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, Sugg J & Parikh S. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. Journal of Clinical Endocrinology and Metabolism 2012 97 1020-1031. (https://doi.org/10.1210/jc.2011- 2260)
    • (2012) Journal of Clinical Endocrinology and Metabolism , vol.97 , pp. 1020-1031
    • Bolinder, J.1    Ljunggren, O.2    Kullberg, J.3    Johansson, L.4    Wilding, J.5    Langkilde, A.M.6    Sugg, J.7    Parikh, S.8
  • 21
    • 84892479365 scopus 로고    scopus 로고
    • Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin
    • Bolinder J, Ljunggren O, Johansson L, Wilding J, Langkilde AM, Sjostrom CD, Sugg J & Parikh S. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes, Obesity and Metabolism 2014 16 159-169. (https://doi.org/10.1111/dom.12189)
    • (2014) Diabetes, Obesity and Metabolism , vol.16 , pp. 159-169
    • Bolinder, J.1    Ljunggren, O.2    Johansson, L.3    Wilding, J.4    Langkilde, A.M.5    Sjostrom, C.D.6    Sugg, J.7    Parikh, S.8
  • 22
    • 77949653079 scopus 로고    scopus 로고
    • Section 30, the integration of metabolism
    • ed., ch 30, pp 1250-1280. New York: W H Freeman
    • Berg JM, Tymoczko JL & Stryer L. Section 30, the integration of metabolism. In Biochemistry, 5 ed., ch 30, pp 1250-1280. New York: W H Freeman, 2002.
    • (2002) Biochemistry , vol.5
    • Berg, J.M.1    Tymoczko, J.L.2    Stryer, L.3
  • 23
    • 84893802111 scopus 로고    scopus 로고
    • Fasting: Molecular mechanisms and clinical applications
    • Longo VD & Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metabolism 2014 19 181-192. (https://doi. org/10.1016/j.cmet.2013.12.008)
    • (2014) Cell Metabolism , vol.19 , pp. 181-192
    • Longo, V.D.1    Mattson, M.P.2
  • 24
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M & Sabatini DM. mTOR signaling in growth control and disease. Cell 2012 149 274-293. (https://doi.org/10.1016/j. cell.2012.03.017)
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 25
    • 84555195856 scopus 로고    scopus 로고
    • Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling
    • Lee J, Giordano S & Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal 2012 441 523-540. (https://doi.org/10.1042/BJ20111451)
    • (2012) Biochemical Journal , vol.441 , pp. 523-540
    • Lee, J.1    Giordano, S.2    Zhang, J.3
  • 26
    • 79961187183 scopus 로고    scopus 로고
    • The role of dysregulated glucagon secretion in type 2 diabetes
    • D'Alessio D. The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes, Obesity and Metabolism 2011 13 (Supplement 1) 126-132. (https://doi.org/10.1111/j.1463-1326.2011.01449.x)
    • (2011) Diabetes, Obesity and Metabolism , vol.13 , pp. 126-132
    • D'Alessio, D.1
  • 27
    • 80054091845 scopus 로고    scopus 로고
    • Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol
    • Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC & Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011 54 2506-2514. (https://doi. org/10.1007/s00125-011-2204-7)
    • (2011) Diabetologia , vol.54 , pp. 2506-2514
    • Lim, E.L.1    Hollingsworth, K.G.2    Aribisala, B.S.3    Chen, M.J.4    Mathers, J.C.5    Taylor, R.6
  • 28
    • 78651350292 scopus 로고    scopus 로고
    • Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement executive summary
    • Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, Albright AL & Braun B. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care 2010 33 2692-2696. (https://doi. org/10.2337/dc10-1548)
    • (2010) Diabetes Care , vol.33 , pp. 2692-2696
    • Colberg, S.R.1    Sigal, R.J.2    Fernhall, B.3    Regensteiner, J.G.4    Blissmer, B.J.5    Rubin, R.R.6    Chasan-Taber, L.7    Albright, A.L.8    Braun, B.9
  • 29
    • 84885473538 scopus 로고    scopus 로고
    • Exaggerated glucagon-like peptide 1 response is important for improved beta-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes
    • Jorgensen NB, Dirksen C, Bojsen-Moller KN, Jacobsen SH, Worm D, Hansen DL, Kristiansen VB, Naver L, Madsbad S & Holst JJ. Exaggerated glucagon-like peptide 1 response is important for improved beta-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes 2013 62 3044-3052. (https://doi.org/10.2337/db13-0022)
    • (2013) Diabetes , vol.62 , pp. 3044-3052
    • Jorgensen, N.B.1    Dirksen, C.2    Bojsen-Moller, K.N.3    Jacobsen, S.H.4    Worm, D.5    Hansen, D.L.6    Kristiansen, V.B.7    Naver, L.8    Madsbad, S.9    Holst, J.J.10
  • 30
    • 84975526052 scopus 로고    scopus 로고
    • Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan
    • Longo VD & Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metabolism 2016 23 1048-1059. (https://doi.org/10.1016/j.cmet.2016.06.001)
    • (2016) Cell Metabolism , vol.23 , pp. 1048-1059
    • Longo, V.D.1    Panda, S.2
  • 31
    • 22144484448 scopus 로고    scopus 로고
    • Skeletal muscle fat oxidation: Timing and flexibility are everything
    • Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. Journal of Clinical Investigation 2005 115 1699-1702. (https://doi.org/10.1172/JCI25758)
    • (2005) Journal of Clinical Investigation , vol.115 , pp. 1699-1702
    • Kelley, D.E.1
  • 32
    • 70350418625 scopus 로고    scopus 로고
    • MTOR signaling at a glance
    • Laplante M & Sabatini DM. mTOR signaling at a glance. Journal of Cell Science 2009 122 3589-3594. (https://doi.org/10.1242/ jcs.051011)
    • (2009) Journal of Cell Science , vol.122 , pp. 3589-3594
    • Laplante, M.1    Sabatini, D.M.2
  • 33
    • 84912123766 scopus 로고    scopus 로고
    • Role of nutrient-sensing signals in the pathogenesis of diabetic nephropathy
    • Kume S, Koya D, Uzu T & Maegawa H. Role of nutrient-sensing signals in the pathogenesis of diabetic nephropathy. BioMed Research International 2014 2014 315494. (https://doi. org/10.1155/2014/315494)
    • (2014) BioMed Research International , vol.2014 , pp. 315494
    • Kume, S.1    Koya, D.2    Uzu, T.3    Maegawa, H.4
  • 34
    • 78650510609 scopus 로고    scopus 로고
    • MTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu R, Efeyan A & Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology 2011 12 21-35. (https://doi.org/10.1038/nrm3025)
    • (2011) Nature Reviews Molecular Cell Biology , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 35
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell RC, Yuan HX & Guan KL. Autophagy regulation by nutrient signaling. Cell Research 2014 24 42-57. (https://doi.org/10.1038/ cr.2013.166)
    • (2014) Cell Research , vol.24 , pp. 42-57
    • Russell, R.C.1    Yuan, H.X.2    Guan, K.L.3
  • 37
    • 84876408458 scopus 로고    scopus 로고
    • Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion
    • Zhou J, Tan SH, Nicolas V, Bauvy C, Yang ND, Zhang J, Xue Y, Codogno P & Shen HM. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Research 2013 23 508-523. (https://doi. org/10.1038/cr.2013.11)
    • (2013) Cell Research , vol.23 , pp. 508-523
    • Zhou, J.1    Tan, S.H.2    Nicolas, V.3    Bauvy, C.4    Yang, N.D.5    Zhang, J.6    Xue, Y.7    Codogno, P.8    Shen, H.M.9
  • 38
    • 84864882073 scopus 로고    scopus 로고
    • FOXOphagy path to inducing stress resistance and cell survival
    • Sandri M. FOXOphagy path to inducing stress resistance and cell survival. Nature Cell Biology 2012 14 786-788. (https://doi. org/10.1038/ncb2550)
    • (2012) Nature Cell Biology , vol.14 , pp. 786-788
    • Sandri, M.1
  • 39
    • 84896887720 scopus 로고    scopus 로고
    • Regulation of autophagy and mitophagy by nutrient availability and acetylation
    • Webster BR, Scott I, Traba J, Han K & Sack MN. Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochimica et Biophysica Acta 2014 1841 525-534. (https://doi. org/10.1016/j.bbalip.2014.02.001)
    • (2014) Biochimica et Biophysica Acta , vol.1841 , pp. 525-534
    • Webster, B.R.1    Scott, I.2    Traba, J.3    Han, K.4    Sack, M.N.5
  • 41
    • 84867773087 scopus 로고    scopus 로고
    • Mitophagy: Mechanisms, pathophysiological roles, and analysis
    • Ding WX & Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry 2012 393 547-564. (https:// doi.org/10.1515/hsz-2012-0119)
    • (2012) Biological Chemistry , vol.393 , pp. 547-564
    • Ding, W.X.1    Yin, X.M.2
  • 42
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa M & Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metabolism 2013 17 491-506. (https://doi.org/10.1016/j.cmet.2013.03.002)
    • (2013) Cell Metabolism , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 43
    • 75349112375 scopus 로고    scopus 로고
    • Mitochondrial turnover and aging of long-lived postmitotic cells: The mitochondrial-lysosomal axis theory of aging
    • Terman A, Kurz T, Navratil M, Arriaga EA & Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxidants and Redox Signaling 2010 12 503-535. (https://doi.org/10.1089/ ars.2009.2598)
    • (2010) Antioxidants and Redox Signaling , vol.12 , pp. 503-535
    • Terman, A.1    Kurz, T.2    Navratil, M.3    Arriaga, E.A.4    Brunk, U.T.5
  • 44
    • 80051752834 scopus 로고    scopus 로고
    • Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy
    • Gomes LC, Di Benedetto G & Scorrano L. Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy. Cell Cycle 2011 10 2635-2639. (https://doi.org/10.4161/ cc.10.16.17002)
    • (2011) Cell Cycle , vol.10 , pp. 2635-2639
    • Gomes, L.C.1    Di Benedetto, G.2    Scorrano, L.3
  • 46
    • 84922926666 scopus 로고    scopus 로고
    • Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts
    • Song M, Mihara K, Chen Y, Scorrano L & Dorn GW 2nd. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metabolism 2015 21 273-285. (https://doi.org/10.1016/j. cmet.2014.12.011)
    • (2015) Cell Metabolism , vol.21 , pp. 273-285
    • Song, M.1    Mihara, K.2    Chen, Y.3    Scorrano, L.4    Dorn, G.W.5
  • 48
    • 77957308659 scopus 로고    scopus 로고
    • The role of autophagy in beta-cell lipotoxicity and type 2 diabetes
    • Las G & Shirihai OS. The role of autophagy in beta-cell lipotoxicity and type 2 diabetes. Diabetes, Obesity and Metabolism 2010 12 (Supplement 2) 15-19. (https://doi.org/10.1111/j.1463- 1326.2010.01268.x)
    • (2010) Diabetes, Obesity and Metabolism , vol.12 , pp. 15-19
    • Las, G.1    Shirihai, O.S.2
  • 51
    • 77955711544 scopus 로고    scopus 로고
    • Role of autophagy in heart failure associated with aging
    • De Meyer GR, De Keulenaer GW & Martinet W. Role of autophagy in heart failure associated with aging. Heart Failure Reviews 2010 15 423-430. (https://doi.org/10.1007/s10741-010-9166-6)
    • (2010) Heart Failure Reviews , vol.15 , pp. 423-430
    • De Meyer, G.R.1    De Keulenaer, G.W.2    Martinet, W.3
  • 52
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B & Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008 132 27-42. (https://doi.org/10.1016/j.cell.2007.12.018)
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 53
    • 85043221259 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and insulin resistance: An update
    • Montgomery MK & Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections 2015 4 R1-R15. (https:// doi.org/10.1530/EC-14-0092)
    • (2015) Endocrine Connections , vol.4 , pp. R1-R15
    • Montgomery, M.K.1    Turner, N.2
  • 61
    • 84878992823 scopus 로고    scopus 로고
    • Mitochondrial biology and Parkinson's disease
    • Perier C & Vila M. Mitochondrial biology and Parkinson's disease. Cold Spring Harbor Perspectives in Medicine 2012 2 a009332. (https:// doi.org/10.1101/cshperspect.a009332)
    • (2012) Cold Spring Harbor Perspectives in Medicine , vol.2 , pp. a009332
    • Perier, C.1    Vila, M.2
  • 62
    • 0023503459 scopus 로고
    • The inhibition site of MPP+, the neurotoxic bioactivation product of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine is near the Q-binding site of NADH dehydrogenase
    • Ramsay RR, Kowal AT, Johnson MK, Salach JI & Singer TP. The inhibition site of MPP+, the neurotoxic bioactivation product of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine is near the Q-binding site of NADH dehydrogenase. Archives of Biochemistry and Biophysics 1987 259 645-649. (https://doi.org/10.1016/0003- 9861(87)90531-5)
    • (1987) Archives of Biochemistry and Biophysics , vol.259 , pp. 645-649
    • Ramsay, R.R.1    Kowal, A.T.2    Johnson, M.K.3    Salach, J.I.4    Singer, T.P.5
  • 65
    • 77951096150 scopus 로고    scopus 로고
    • Mitochondrial dynamics - Fusion, fission, movement, and mitophagy - In neurodegenerative diseases
    • Chen H & Chan DC. Mitochondrial dynamics - fusion, fission, movement, and mitophagy - in neurodegenerative diseases. Human Molecular Genetics 2009 18 R169-R176. (https://doi.org/10.1093/ hmg/ddp326)
    • (2009) Human Molecular Genetics , vol.18 , pp. R169-R176
    • Chen, H.1    Chan, D.C.2
  • 67
    • 84897380527 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and mitophagy: The beginning and end to diabetic nephropathy?
    • Higgins GC & Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? British Journal of Pharmacology 2014 171 1917-1942. (https://doi. org/10.1111/bph.12503)
    • (2014) British Journal of Pharmacology , vol.171 , pp. 1917-1942
    • Higgins, G.C.1    Coughlan, M.T.2
  • 68
    • 84919822611 scopus 로고    scopus 로고
    • Autophagy and mitophagy in diabetic cardiomyopathy
    • Kobayashi S & Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochimica et Biophysica Acta 2015 1852 252-261. (https://doi.org/10.1016/j.bbadis.2014.05.020)
    • (2015) Biochimica et Biophysica Acta , vol.1852 , pp. 252-261
    • Kobayashi, S.1    Liang, Q.2
  • 69
    • 84954271268 scopus 로고    scopus 로고
    • Mitochondrial quality control in the diabetic heart
    • Liang Q & Kobayashi S. Mitochondrial quality control in the diabetic heart. Journal of Molecular and Cellular Cardiology 2016 95 57-69. (https://doi.org/10.1016/j.yjmcc.2015.12.025)
    • (2016) Journal of Molecular and Cellular Cardiology , vol.95 , pp. 57-69
    • Liang, Q.1    Kobayashi, S.2
  • 70
    • 77956367951 scopus 로고    scopus 로고
    • Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance
    • Hoeks J, van Herpen NA, Mensink M, Moonen-Kornips E, van Beurden D, Hesselink MK & Schrauwen P. Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance. Diabetes 2010 59 2117-2125. (https://doi.org/10.2337/db10-0519)
    • (2010) Diabetes , vol.59 , pp. 2117-2125
    • Hoeks, J.1    Van Herpen, N.A.2    Mensink, M.3    Moonen-Kornips, E.4    Van Beurden, D.5    Hesselink, M.K.6    Schrauwen, P.7
  • 72
    • 84925324049 scopus 로고    scopus 로고
    • Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
    • Rambold AS, Cohen S & Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Developmental Cell 2015 32 678-692. (https://doi.org/10.1016/j.devcel.2015.01.029)
    • (2015) Developmental Cell , vol.32 , pp. 678-692
    • Rambold, A.S.1    Cohen, S.2    Lippincott-Schwartz, J.3
  • 75
    • 84973333938 scopus 로고    scopus 로고
    • Metabolic consequences of modern immunosuppressive agents in solid organ transplantation
    • Bamgbola O. Metabolic consequences of modern immunosuppressive agents in solid organ transplantation. Therapeutic Advances in Endocrinology and Metabolism 2016 7 110-127. (https://doi. org/10.1177/2042018816641580)
    • (2016) Therapeutic Advances in Endocrinology and Metabolism , vol.7 , pp. 110-127
    • Bamgbola, O.1
  • 77
    • 0344994585 scopus 로고    scopus 로고
    • Fasting increases serum total cholesterol, LDL cholesterol and apolipoprotein B in healthy, nonobese humans
    • Savendahl L & Underwood LE. Fasting increases serum total cholesterol, LDL cholesterol and apolipoprotein B in healthy, nonobese humans. Journal of Nutrition 1999 129 2005-2008. (https:// doi.org/10.1093/jn/129.11.2005)
    • (1999) Journal of Nutrition , vol.129 , pp. 2005-2008
    • Savendahl, L.1    Underwood, L.E.2
  • 78
    • 84889577594 scopus 로고    scopus 로고
    • SAVOR TIMI 53 - Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus
    • Spinar J & Smahelova A. SAVOR TIMI 53 - saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. Vnitrni Lekarstvi 2013 59 1003-1007.
    • (2013) Vnitrni Lekarstvi , vol.59 , pp. 1003-1007
    • Spinar, J.1    Smahelova, A.2
  • 81
    • 83455206803 scopus 로고    scopus 로고
    • Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)?
    • Canto C & Auwerx J. Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacological Reviews 2012 64 166-187. (https://doi.org/10.1124/pr.110.003905)
    • (2012) Pharmacological Reviews , vol.64 , pp. 166-187
    • Canto, C.1    Auwerx, J.2
  • 82
    • 84975789692 scopus 로고    scopus 로고
    • Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism
    • Briand F, Mayoux E, Brousseau E, Burr N, Urbain I, Costard C, Mark M & Sulpice T. Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes 2016 65 2032-2038. (https://doi. org/10.2337/db16-0049)
    • (2016) Diabetes , vol.65 , pp. 2032-2038
    • Briand, F.1    Mayoux, E.2    Brousseau, E.3    Burr, N.4    Urbain, I.5    Costard, C.6    Mark, M.7    Sulpice, T.8
  • 83
    • 0020060920 scopus 로고
    • Role of free oxaloacetate in ketogenesis. Derivation from the direct measurement of mitochondrial [3-hydroxybutyrate]/[acetoacetate] ratio in hepatocytes
    • Siess EA, Kientsch-Engel RI & Wieland OH. Role of free oxaloacetate in ketogenesis. Derivation from the direct measurement of mitochondrial [3-hydroxybutyrate]/[acetoacetate] ratio in hepatocytes. European Journal of Biochemistry 1982 121 493-499. (https://doi.org/10.1111/j.1432-1033.1982.tb05814.x)
    • (1982) European Journal of Biochemistry , vol.121 , pp. 493-499
    • Siess, E.A.1    Kientsch-Engel, R.I.2    Wieland, O.H.3
  • 84
    • 85029446459 scopus 로고    scopus 로고
    • Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial
    • Dandona P, Mathieu C, Phillip M, Hansen L, Griffen SC, Tschope D, Thoren F, Xu J & Langkilde AM. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes and Endocrinology 2017 5 864-876. (https://doi.org/10.1016/S2213-8587(17)30308-X)
    • (2017) Lancet Diabetes and Endocrinology , vol.5 , pp. 864-876
    • Dandona, P.1    Mathieu, C.2    Phillip, M.3    Hansen, L.4    Griffen, S.C.5    Tschope, D.6    Thoren, F.7    Xu, J.8    Langkilde, A.M.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.