-
3
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
In, New York, Curran Associates, Inc
-
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems (NIPS). New York: Curran Associates, Inc.; 2012. pp. 1097–1105.
-
(2012)
Advances in neural information processing systems (NIPS)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
4
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs
-
Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In International Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015. p. 1–14.
-
(2015)
Proceedings International Conference on Learning Representations (ICLR), San Diega, CA, USA,, p
, pp. 1-14
-
-
Chen, L.C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
5
-
-
84973904859
-
FlowNet learning optical flow with convolutional networks
-
Dosovitskiy A, Fischer P, Ilg E, Häusser P, Hazirbas C, Golkov V, van der Smagt P, Cremers D, Brox T. FlowNet: learning optical flow with convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015; 2758–2766.
-
(2015)
Proceedings Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile
, pp. 2758-2766
-
-
Dosovitskiy, A.1
Fischer, P.2
Ilg, E.3
Häusser, P.4
Hazirbas, C.5
Golkov, V.6
van der Smagt, P.7
Cremers, D.8
Brox, T.9
-
6
-
-
84959197704
-
On learning optimized reaction diffusion processes for effective image restoration
-
Chen Y, Yu W, Pock T. On learning optimized reaction diffusion processes for effective image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015; pp. 5261–5269.
-
(2015)
Proceedings Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA
, pp. 5261-5269
-
-
Chen, Y.1
Yu, W.2
Pock, T.3
-
7
-
-
84921492033
-
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
-
Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 2015;108:214–224.
-
(2015)
Neuroimage
, vol.108
, pp. 214-224
-
-
Zhang, W.1
Li, R.2
Deng, H.3
Wang, L.4
Lin, W.5
Ji, S.6
Shen, D.7
-
8
-
-
84968626579
-
Automatic segmentation of MR brain images with a convolutional neural network
-
Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJNL, Isgum I, Išgum I. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 2016;35:1252–1261.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1252-1261
-
-
Moeskops, P.1
Viergever, M.A.2
Mendrik, A.M.3
de Vries, L.S.4
Benders, M.J.N.L.5
Isgum, I.6
Išgum, I.7
-
9
-
-
84968548037
-
q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans
-
Golkov V, Dosovitskiy A, Sperl JI, Menzel MI, Czisch M, Samann P, Brox T, Cremers D. q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 2016;35:1344–1351.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1344-1351
-
-
Golkov, V.1
Dosovitskiy, A.2
Sperl, J.I.3
Menzel, M.I.4
Czisch, M.5
Samann, P.6
Brox, T.7
Cremers, D.8
-
10
-
-
84959203985
-
Deep MRI brain extraction: a 3D convolutional neural network for skull stripping
-
Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. Neuroimage 2016;129:460–469.
-
(2016)
Neuroimage
, vol.129
, pp. 460-469
-
-
Kleesiek, J.1
Urban, G.2
Hubert, A.3
Schwarz, D.4
Maier-Hein, K.5
Bendszus, M.6
Biller, A.7
-
11
-
-
0030982409
-
Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
-
Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591–603.
-
(1997)
Magn Reson Med
, vol.38
, pp. 591-603
-
-
Sodickson, D.K.1
Manning, W.J.2
-
13
-
-
0036263907
-
Generalized autocalibrating partially parallel acquisitions (GRAPPA)
-
Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202–1210.
-
(2002)
Magn Reson Med
, vol.47
, pp. 1202-1210
-
-
Griswold, M.A.1
Jakob, P.M.2
Heidemann, R.M.3
Nittka, M.4
Jellus, V.5
Wang, J.6
Kiefer, B.7
Haase, A.8
-
14
-
-
31744440684
-
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
-
Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 2006;52:489–509.
-
(2006)
IEEE Trans Inf Theory
, vol.52
, pp. 489-509
-
-
Candes, E.J.1
Romberg, J.2
Tao, T.3
-
15
-
-
33645712892
-
Compressed sensing
-
Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2006;52:1289–1306.
-
(2006)
IEEE Trans Inf Theory
, vol.52
, pp. 1289-1306
-
-
Donoho, D.L.1
-
16
-
-
36849088522
-
Sparse MRI: the application of compressed sensing for rapid MR imaging
-
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182–1195.
-
(2007)
Magn Reson Med
, vol.58
, pp. 1182-1195
-
-
Lustig, M.1
Donoho, D.2
Pauly, J.M.3
-
17
-
-
79957590676
-
Certain topics in telegraph transmission theory
-
Nyquist H. Certain topics in telegraph transmission theory. Trans Am Inst Elect Eng 1928;47:617–644.
-
(1928)
Trans Am Inst Elect Eng
, vol.47
, pp. 617-644
-
-
Nyquist, H.1
-
18
-
-
84911837213
-
Communication in the presence of noise
-
Shannon CE. Communication in the presence of noise. Proc Inst Radio Eng 1949;37:10–21.
-
(1949)
Proc Inst Radio Eng
, vol.37
, pp. 10-21
-
-
Shannon, C.E.1
-
19
-
-
34250320137
-
Undersampled radial MRI with multiple coils: iterative image reconstruction using a total variation constraint
-
Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils: iterative image reconstruction using a total variation constraint. Magn Reson Med 2007;57:1086–1098.
-
(2007)
Magn Reson Med
, vol.57
, pp. 1086-1098
-
-
Block, K.T.1
Uecker, M.2
Frahm, J.3
-
21
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D 1992;60:259–268.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
22
-
-
79251548920
-
Second order total generalized variation (TGV) for MRI
-
Knoll F, Bredies K, Pock T, Stollberger R. Second order total generalized variation (TGV) for MRI. In Proceedings of the 18th Annual Meeting of ISMRM, Stockholm, Sweden, 2010. pp. 480–491.
-
(2010)
Proceedings Proceedings of the 18th Annual Meeting of ISMRM, Stockholm, Sweden
, pp. 480-491
-
-
Knoll, F.1
Bredies, K.2
Pock, T.3
Stollberger, R.4
-
23
-
-
84355162258
-
Parallel imaging with nonlinear reconstruction using variational penalties
-
Knoll F, Clason C, Bredies K, Uecker M, Stollberger R. Parallel imaging with nonlinear reconstruction using variational penalties. Magn Reson Med 2012;67:34–41.
-
(2012)
Magn Reson Med
, vol.67
, pp. 34-41
-
-
Knoll, F.1
Clason, C.2
Bredies, K.3
Uecker, M.4
Stollberger, R.5
-
24
-
-
84946035615
-
Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction
-
Hollingsworth KG. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys Med Biol 2015;60:R297–R322.
-
(2015)
Phys Med Biol
, vol.60
, pp. R297-R322
-
-
Hollingsworth, K.G.1
-
25
-
-
0000518587
-
An iteration formula for Fredholm integral equations of the first kind
-
Landweber L. An iteration formula for Fredholm integral equations of the first kind. Am J Math 1951;73:615–624.
-
(1951)
Am J Math
, vol.73
, pp. 615-624
-
-
Landweber, L.1
-
26
-
-
0040893030
-
A convergence analysis of the Landweber iteration for nonlinear ill-posed problems
-
Hanke M, Neubauer A, Scherzer O. A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer Math 1995;72:21–37.
-
(1995)
Numer Math
, vol.72
, pp. 21-37
-
-
Hanke, M.1
Neubauer, A.2
Scherzer, O.3
-
27
-
-
84983656005
-
An introduction to continuous optimization for imaging
-
Chambolle A, Pock T. An introduction to continuous optimization for imaging. Acta Numerica 2016;25:161–319.
-
(2016)
Acta Numerica
, vol.25
, pp. 161-319
-
-
Chambolle, A.1
Pock, T.2
-
29
-
-
84979687789
-
Learning joint demosaicing and denoising based on sequential energy minimization
-
Klatzer T, Hammernik K, Knöbelreiter P, Pock T. Learning joint demosaicing and denoising based on sequential energy minimization. In Proceedings of the IEEE International Conference on Computational Photography (ICCP), Evanston, Illinois, USA 2016. p. 1–11.
-
(2016)
Proceedings Proceedings of the IEEE International Conference on Computational Photography (ICCP), Evanston, Illinois, USA, p
, pp. 1-11
-
-
Klatzer, T.1
Hammernik, K.2
Knöbelreiter, P.3
Pock, T.4
-
30
-
-
84952317476
-
Learning reaction-diffusion models for image inpainting
-
Yu W, Heber S, Pock T. Learning reaction-diffusion models for image inpainting. In Pattern Recognition: 37th German Conference, GCPR 2015, Aachen, Germany, October 7–10, 2015. Cham: Springer, 2015. p. 356–367.
-
(2015)
Proceedings Pattern Recognition 37th German Conference, GCPR 2015, Aachen, Germany, October 7–10, 2015. Cham Springer,, p
, pp. 356-367
-
-
Yu, W.1
Heber, S.2
Pock, T.3
-
31
-
-
85007346120
-
Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems
-
Pock T, Sabach S. Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J Imaging Sci 2016;9:1756–1787.
-
(2016)
SIAM J Imaging Sci
, vol.9
, pp. 1756-1787
-
-
Pock, T.1
Sabach, S.2
-
32
-
-
85029587995
-
Variational networks connecting variational methods and deep learning
-
Kobler E, Klatzer T, Hammernik K, Pock T. Variational networks: connecting variational methods and deep learning. In Proceedings of the German Conference on Pattern Recognition (GCPR), Basel, Switzerland, 2017. p. 281–293.
-
(2017)
Proceedings Proceedings of the German Conference on Pattern Recognition (GCPR), Basel, Switzerland,, p
, pp. 281-293
-
-
Kobler, E.1
Klatzer, T.2
Hammernik, K.3
Pock, T.4
-
33
-
-
84872543023
-
Efficient backprop
-
In, Berlin, Springer
-
LeCun YA, Bottou L, Orr GB, Müller KR. Efficient backprop. In Neural networks: tricks of the trade. Berlin: Springer; 2012. pp. 9–50.
-
(2012)
Neural networks: tricks of the trade
, pp. 9-50
-
-
LeCun, Y.A.1
Bottou, L.2
Orr, G.B.3
Müller, K.R.4
-
34
-
-
84894420593
-
ESPIRiT–an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
-
Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT–an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990–1001.
-
(2014)
Magn Reson Med
, vol.71
, pp. 990-1001
-
-
Uecker, M.1
Lai, P.2
Murphy, M.J.3
Virtue, P.4
Elad, M.5
Pauly, J.M.6
Vasanawala, S.S.7
Lustig, M.8
-
36
-
-
79955633431
-
MR image reconstruction from highly undersampled k-space data by dictionary learning
-
Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 2011;30:1028–1041.
-
(2011)
IEEE Trans Med Imaging
, vol.30
, pp. 1028-1041
-
-
Ravishankar, S.1
Bresler, Y.2
-
38
-
-
85009115445
-
A perspective on deep imaging
-
Wang G. A perspective on deep imaging. IEEE Access 2016;4:8914–8924.
-
(2016)
IEEE Access
, vol.4
, pp. 8914-8924
-
-
Wang, G.1
-
39
-
-
85029601946
-
Learning a variational model for compressed sensing MRI reconstruction
-
Hammernik K, Knoll F, Sodickson DK, Pock T. Learning a variational model for compressed sensing MRI reconstruction. In Proceedings of the 24th Annual Meeting of ISMRM, Singapore, 2016. p. 1088.
-
(2016)
Proceedings Proceedings of the 24th Annual Meeting of ISMRM, Singapore,, p
, pp. 1088
-
-
Hammernik, K.1
Knoll, F.2
Sodickson, D.K.3
Pock, T.4
-
41
-
-
85023768572
-
Data-driven learning of a union of sparsifying transforms model for blind compressed sensing
-
Ravishankar S, Bresler Y. Data-driven learning of a union of sparsifying transforms model for blind compressed sensing. IEEE Trans Comput Imaging 2016;2:294–309.
-
(2016)
IEEE Trans Comput Imaging
, vol.2
, pp. 294-309
-
-
Ravishankar, S.1
Bresler, Y.2
-
42
-
-
84978427520
-
Accelerating magnetic resonance imaging via deep learning
-
Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, Feng D, Liang D. Accelerating magnetic resonance imaging via deep learning. In IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, 2016. pp. 514–517.
-
(2016)
Proceedings IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague
, pp. 514-517
-
-
Wang, S.1
Su, Z.2
Ying, L.3
Peng, X.4
Zhu, S.5
Liang, F.6
Feng, D.7
Liang, D.8
-
43
-
-
85018917190
-
Deep ADMM-Net for compressive sensing MRI
-
In, Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R, Editors., New York, Curran Associates, Inc
-
Yang Y, Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R, Editors. Advances in neural information processing systems (NIPS). New York: Curran Associates, Inc.; 2016. pp. 10–18.
-
(2016)
Advances in neural information processing systems (NIPS)
, pp. 10-18
-
-
Yang, Y.1
Sun, J.2
Li, H.3
Xu, Z.4
-
44
-
-
85043396447
-
-
Deep learning with domain adaptation for accelerated projection reconstruction MR. preprint
-
Han YS, Yoo J, Ye JC. Deep learning with domain adaptation for accelerated projection reconstruction MR. arXiv:170301135 preprint, 2017.
-
(2017)
-
-
Han, Y.S.1
Yoo, J.2
Ye, J.C.3
-
45
-
-
85049255220
-
Learning-based reconstruction using artificial neural network for higher acceleration
-
Kwon K, Kim D, Seo H, Cho J, Kim B, Park HW. Learning-based reconstruction using artificial neural network for higher acceleration. In Proceedings of the 24th Annual Meeting of ISMRM, Singapore, 2016. p. 1081.
-
(2016)
Proceedings Proceedings of the 24th Annual Meeting of ISMRM, Singapore,, p
, pp. 1081
-
-
Kwon, K.1
Kim, D.2
Seo, H.3
Cho, J.4
Kim, B.5
Park, H.W.6
-
46
-
-
85043367458
-
-
Deep artifact learning for compressed sensing and parallel MRI. preprint
-
Lee D, Yoo J, Ye JC. Deep artifact learning for compressed sensing and parallel MRI. arXiv:170301120 preprint, 2017.
-
(2017)
-
-
Lee, D.1
Yoo, J.2
Ye, J.C.3
-
47
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference Computer Vision (ECCV), Zurich, Berlin, Springer, 2014. pp. 818–833.
-
(2014)
Proceedings Proceedings of the European Conference Computer Vision (ECCV), Zurich, Berlin, Springer
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
48
-
-
0000293183
-
Theory of communication
-
–459
-
Gabor D. Theory of communication. J Inst Electr Eng 1946, vol. 93, pp. 429–459.
-
(1946)
J Inst Electr Eng
, vol.93
, pp. 429
-
-
Gabor, D.1
-
49
-
-
0022098435
-
Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters
-
Daugman JG. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am 1985;2:1160–1169.
-
(1985)
J Opt Soc Am
, vol.2
, pp. 1160-1169
-
-
Daugman, J.G.1
-
50
-
-
0026398342
-
Unsupervised texture segmentation using Gabor filters
-
Jain AK, Farrokhnia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognit 1990;24:1167–1186.
-
(1990)
Pattern Recognit
, vol.24
, pp. 1167-1186
-
-
Jain, A.K.1
Farrokhnia, F.2
-
51
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 1996;381:607–609.
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
52
-
-
0032681789
-
-
Fort Collins, Colorado, USA
-
Huang JHJ, Mumford D. Statistics of natural images and models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Fort Collins, Colorado, USA, 1999. pp. 541–547.
-
(1999)
Statistics of natural images and models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 541-547
-
-
Huang, J.H.J.1
Mumford, D.2
-
54
-
-
85043392179
-
On the influence of sampling pattern design on deep learning-based MRI reconstruction
-
Hammernik K, Knoll F, Sodickson D, Pock T. On the influence of sampling pattern design on deep learning-based MRI reconstruction. In Proceedings of 25th Annual Meeting of ISMRM, Honolulu, Hawaii, USA, 2017. p. 644.
-
(2017)
Proceedings Proceedings of 25th Annual Meeting of ISMRM, Honolulu, Hawaii, USA,, p
, pp. 644
-
-
Hammernik, K.1
Knoll, F.2
Sodickson, D.3
Pock, T.4
-
55
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inf Process Syst 2014;27:2672–2680.
-
(2014)
Adv Neural Inf Process Syst
, vol.27
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
|