메뉴 건너뛰기




Volumn 79, Issue 6, 2018, Pages 3055-3071

Learning a variational network for reconstruction of accelerated MRI data

Author keywords

accelerated MRI; compressed sensing; deep learning; image reconstruction; parallel imaging; variational network

Indexed keywords

COMPRESSED SENSING; COMPUTATION THEORY; DEEP LEARNING; GRADIENT METHODS; MAGNETIC RESONANCE; MAGNETIC RESONANCE IMAGING; MEDICINE; SOLDERED JOINTS;

EID: 85043388139     PISSN: 07403194     EISSN: 15222594     Source Type: Journal    
DOI: 10.1002/mrm.26977     Document Type: Article
Times cited : (1568)

References (55)
  • 7
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 2015;108:214–224.
    • (2015) Neuroimage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3    Wang, L.4    Lin, W.5    Ji, S.6    Shen, D.7
  • 11
    • 0030982409 scopus 로고    scopus 로고
    • Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
    • Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591–603.
    • (1997) Magn Reson Med , vol.38 , pp. 591-603
    • Sodickson, D.K.1    Manning, W.J.2
  • 14
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
    • Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 2006;52:489–509.
    • (2006) IEEE Trans Inf Theory , vol.52 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 15
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2006;52:1289–1306.
    • (2006) IEEE Trans Inf Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 16
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: the application of compressed sensing for rapid MR imaging
    • Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182–1195.
    • (2007) Magn Reson Med , vol.58 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.2    Pauly, J.M.3
  • 17
    • 79957590676 scopus 로고
    • Certain topics in telegraph transmission theory
    • Nyquist H. Certain topics in telegraph transmission theory. Trans Am Inst Elect Eng 1928;47:617–644.
    • (1928) Trans Am Inst Elect Eng , vol.47 , pp. 617-644
    • Nyquist, H.1
  • 18
    • 84911837213 scopus 로고
    • Communication in the presence of noise
    • Shannon CE. Communication in the presence of noise. Proc Inst Radio Eng 1949;37:10–21.
    • (1949) Proc Inst Radio Eng , vol.37 , pp. 10-21
    • Shannon, C.E.1
  • 19
    • 34250320137 scopus 로고    scopus 로고
    • Undersampled radial MRI with multiple coils: iterative image reconstruction using a total variation constraint
    • Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils: iterative image reconstruction using a total variation constraint. Magn Reson Med 2007;57:1086–1098.
    • (2007) Magn Reson Med , vol.57 , pp. 1086-1098
    • Block, K.T.1    Uecker, M.2    Frahm, J.3
  • 21
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D 1992;60:259–268.
    • (1992) Physica D , vol.60 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 23
    • 84355162258 scopus 로고    scopus 로고
    • Parallel imaging with nonlinear reconstruction using variational penalties
    • Knoll F, Clason C, Bredies K, Uecker M, Stollberger R. Parallel imaging with nonlinear reconstruction using variational penalties. Magn Reson Med 2012;67:34–41.
    • (2012) Magn Reson Med , vol.67 , pp. 34-41
    • Knoll, F.1    Clason, C.2    Bredies, K.3    Uecker, M.4    Stollberger, R.5
  • 24
    • 84946035615 scopus 로고    scopus 로고
    • Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction
    • Hollingsworth KG. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys Med Biol 2015;60:R297–R322.
    • (2015) Phys Med Biol , vol.60 , pp. R297-R322
    • Hollingsworth, K.G.1
  • 25
    • 0000518587 scopus 로고
    • An iteration formula for Fredholm integral equations of the first kind
    • Landweber L. An iteration formula for Fredholm integral equations of the first kind. Am J Math 1951;73:615–624.
    • (1951) Am J Math , vol.73 , pp. 615-624
    • Landweber, L.1
  • 26
    • 0040893030 scopus 로고
    • A convergence analysis of the Landweber iteration for nonlinear ill-posed problems
    • Hanke M, Neubauer A, Scherzer O. A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer Math 1995;72:21–37.
    • (1995) Numer Math , vol.72 , pp. 21-37
    • Hanke, M.1    Neubauer, A.2    Scherzer, O.3
  • 27
    • 84983656005 scopus 로고    scopus 로고
    • An introduction to continuous optimization for imaging
    • Chambolle A, Pock T. An introduction to continuous optimization for imaging. Acta Numerica 2016;25:161–319.
    • (2016) Acta Numerica , vol.25 , pp. 161-319
    • Chambolle, A.1    Pock, T.2
  • 31
    • 85007346120 scopus 로고    scopus 로고
    • Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems
    • Pock T, Sabach S. Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J Imaging Sci 2016;9:1756–1787.
    • (2016) SIAM J Imaging Sci , vol.9 , pp. 1756-1787
    • Pock, T.1    Sabach, S.2
  • 36
    • 79955633431 scopus 로고    scopus 로고
    • MR image reconstruction from highly undersampled k-space data by dictionary learning
    • Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 2011;30:1028–1041.
    • (2011) IEEE Trans Med Imaging , vol.30 , pp. 1028-1041
    • Ravishankar, S.1    Bresler, Y.2
  • 38
    • 85009115445 scopus 로고    scopus 로고
    • A perspective on deep imaging
    • Wang G. A perspective on deep imaging. IEEE Access 2016;4:8914–8924.
    • (2016) IEEE Access , vol.4 , pp. 8914-8924
    • Wang, G.1
  • 40
  • 41
    • 85023768572 scopus 로고    scopus 로고
    • Data-driven learning of a union of sparsifying transforms model for blind compressed sensing
    • Ravishankar S, Bresler Y. Data-driven learning of a union of sparsifying transforms model for blind compressed sensing. IEEE Trans Comput Imaging 2016;2:294–309.
    • (2016) IEEE Trans Comput Imaging , vol.2 , pp. 294-309
    • Ravishankar, S.1    Bresler, Y.2
  • 43
    • 85018917190 scopus 로고    scopus 로고
    • Deep ADMM-Net for compressive sensing MRI
    • In, Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R, Editors., New York, Curran Associates, Inc
    • Yang Y, Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R, Editors. Advances in neural information processing systems (NIPS). New York: Curran Associates, Inc.; 2016. pp. 10–18.
    • (2016) Advances in neural information processing systems (NIPS) , pp. 10-18
    • Yang, Y.1    Sun, J.2    Li, H.3    Xu, Z.4
  • 44
    • 85043396447 scopus 로고    scopus 로고
    • Deep learning with domain adaptation for accelerated projection reconstruction MR. preprint
    • Han YS, Yoo J, Ye JC. Deep learning with domain adaptation for accelerated projection reconstruction MR. arXiv:170301135 preprint, 2017.
    • (2017)
    • Han, Y.S.1    Yoo, J.2    Ye, J.C.3
  • 46
    • 85043367458 scopus 로고    scopus 로고
    • Deep artifact learning for compressed sensing and parallel MRI. preprint
    • Lee D, Yoo J, Ye JC. Deep artifact learning for compressed sensing and parallel MRI. arXiv:170301120 preprint, 2017.
    • (2017)
    • Lee, D.1    Yoo, J.2    Ye, J.C.3
  • 48
    • 0000293183 scopus 로고
    • Theory of communication
    • –459
    • Gabor D. Theory of communication. J Inst Electr Eng 1946, vol. 93, pp. 429–459.
    • (1946) J Inst Electr Eng , vol.93 , pp. 429
    • Gabor, D.1
  • 49
    • 0022098435 scopus 로고
    • Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters
    • Daugman JG. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am 1985;2:1160–1169.
    • (1985) J Opt Soc Am , vol.2 , pp. 1160-1169
    • Daugman, J.G.1
  • 50
    • 0026398342 scopus 로고
    • Unsupervised texture segmentation using Gabor filters
    • Jain AK, Farrokhnia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognit 1990;24:1167–1186.
    • (1990) Pattern Recognit , vol.24 , pp. 1167-1186
    • Jain, A.K.1    Farrokhnia, F.2
  • 51
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 1996;381:607–609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.