메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 992-1002

SchNet: A continuous-filter convolutional neural network for modeling quantum interactions

Author keywords

[No Author keywords available]

Indexed keywords

BANDPASS FILTERS; BENCHMARKING; CONVOLUTION; MOLECULAR DYNAMICS; MOLECULES; NETWORK ARCHITECTURE; NEURAL NETWORKS; QUANTUM CHEMISTRY;

EID: 85044257334     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1037)

References (41)
  • 1
    • 84856512353 scopus 로고    scopus 로고
    • Fast and accurate modeling of molecular atomization energies with machine learning
    • M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett., 108(5):058301, 2012.
    • (2012) Phys. Rev. Lett. , vol.108 , Issue.5 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Müller, K.-R.3    Von Lilienfeld, O.A.4
  • 4
    • 84901440781 scopus 로고    scopus 로고
    • How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
    • K. T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.-R. Müller, and EKU Gross. How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B, 89(20):205118, 2014.
    • (2014) Phys. Rev. B , vol.89 , Issue.20 , pp. 205118
    • Schütt, K.T.1    Glawe, H.2    Brockherde, F.3    Sanna, A.4    Müller, K.-R.5    Gross, E.6
  • 9
    • 85046997186 scopus 로고    scopus 로고
    • Solid harmonic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3d electronic densities
    • M. Eickenberg, G. Exarchakis, M. Hirn, and S. Mallat. Solid harmonic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3d electronic densities. In Advances in Neural Information Processing Systems 30, pages 6543-6552. 2017.
    • (2017) Advances in Neural Information Processing Systems 30 , pp. 6543-6552
    • Eickenberg, M.1    Exarchakis, G.2    Hirn, M.3    Mallat, S.4
  • 11
    • 33748257982 scopus 로고    scopus 로고
    • A random-sampling high dimensional model representation neural network for building potential energy surfaces
    • S. Manzhos and T. Carrington Jr. A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys., 125(8):084109, 2006.
    • (2006) J. Chem. Phys. , vol.125 , Issue.8 , pp. 084109
    • Manzhos, S.1    Carrington, T.2
  • 12
    • 67249096678 scopus 로고    scopus 로고
    • Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations
    • R. Malshe, M.and Narulkar, L. M. Raff, M. Hagan, S. Bukkapatnam, P. M. Agrawal, and R. Komanduri. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations. J. Chem. Phys., 130(18):184102, 2009.
    • (2009) J. Chem. Phys. , vol.130 , Issue.18 , pp. 184102
    • Malshe, R.1    Narulkar, M.2    Raff, L.M.3    Hagan, M.4    Bukkapatnam, S.5    Agrawal, P.M.6    Komanduri, R.7
  • 13
    • 34047127421 scopus 로고    scopus 로고
    • Generalized neural-network representation of high-dimensional potential-energy surfaces
    • J. Behler and M. Parrinello. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98(14):146401, 2007.
    • (2007) Phys. Rev. Lett. , vol.98 , Issue.14 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 14
    • 77950441864 scopus 로고    scopus 로고
    • Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
    • A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett., 104(13):136403, 2010.
    • (2010) Phys. Rev. Lett. , vol.104 , Issue.13 , pp. 136403
    • Bartók, A.P.1    Payne, M.C.2    Kondor, R.3    Csányi, G.4
  • 15
    • 79953856961 scopus 로고    scopus 로고
    • Atom-centered symmetry functions for constructing high-dimensional neural network potentials
    • J. Behler. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys., 134(7):074106, 2011.
    • (2011) J. Chem. Phys. , vol.134 , Issue.7 , pp. 074106
    • Behler, J.1
  • 16
    • 84878571921 scopus 로고    scopus 로고
    • On representing chemical environments
    • A. P. Bartók, R. Kondor, and G. Csányi. On representing chemical environments. Phys. Rev. B, 87(18):184115, 2013.
    • (2013) Phys. Rev. B , vol.87 , Issue.18 , pp. 184115
    • Bartók, A.P.1    Kondor, R.2    Csányi, G.3
  • 17
    • 84965159799 scopus 로고    scopus 로고
    • Convolutional networks on graphs for learning molecular fingerprints
    • C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors
    • D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, NIPS, pages 2224-2232, 2015.
    • (2015) NIPS , pp. 2224-2232
    • Duvenaud, D.K.1    Maclaurin, D.2    Iparraguirre, J.3    Bombarell, R.4    Hirzel, T.5    Aspuru-Guzik, A.6    Adams, R.P.7
  • 27
    • 84960485441 scopus 로고    scopus 로고
    • Redfit-x: Cross-spectral analysis of unevenly spaced paleoclimate time series
    • K. B. Ólafsdóttir, M. Schulz, and M. Mudelsee. Redfit-x: Cross-spectral analysis of unevenly spaced paleoclimate time series. Computers & Geosciences, 91:11-18, 2016.
    • (2016) Computers & Geosciences , vol.91 , pp. 11-18
    • Ólafsdóttir, K.B.1    Schulz, M.2    Mudelsee, M.3
  • 30
    • 85021794262 scopus 로고    scopus 로고
    • Wavelet scattering regression of quantum chemical energies
    • M. Hirn, S. Mallat, and N. Poilvert. Wavelet scattering regression of quantum chemical energies. Multiscale Modeling & Simulation, 15(2):827-863, 2017.
    • (2017) Multiscale Modeling & Simulation , vol.15 , Issue.2 , pp. 827-863
    • Hirn, M.1    Mallat, S.2    Poilvert, N.3
  • 31
    • 85083951767 scopus 로고    scopus 로고
    • Spectral networks and locally connected networks on graphs
    • J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. Spectral networks and locally connected networks on graphs. In ICLR, 2014.
    • (2014) ICLR
    • Bruna, J.1    Zaremba, W.2    Szlam, A.3    Lecun, Y.4
  • 39
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.P.1    Ba, J.2
  • 40
    • 67649619336 scopus 로고    scopus 로고
    • 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13
    • L. C. Blum and J.-L. Reymond. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc., 131:8732 2009.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 8732
    • Blum, L.C.1    Reymond, J.-L.2
  • 41
    • 84925393362 scopus 로고    scopus 로고
    • The chemical space project
    • J.-L. Reymond. The chemical space project. Acc. Chem. Res., 48(3):722-730, 2015.
    • (2015) Acc. Chem. Res. , vol.48 , Issue.3 , pp. 722-730
    • Reymond, J.-L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.