-
1
-
-
84856512353
-
Fast and accurate modeling of molecular atomization energies with machine learning
-
M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett., 108(5):058301, 2012.
-
(2012)
Phys. Rev. Lett.
, vol.108
, Issue.5
, pp. 058301
-
-
Rupp, M.1
Tkatchenko, A.2
Müller, K.-R.3
Von Lilienfeld, O.A.4
-
2
-
-
84885045537
-
Machine learning of molecular electronic properties in chemical compound space
-
G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld. Machine learning of molecular electronic properties in chemical compound space. New J. Phys., 15(9):095003, 2013.
-
(2013)
New J. Phys.
, vol.15
, Issue.9
, pp. 095003
-
-
Montavon, G.1
Rupp, M.2
Gobre, V.3
Vazquez-Mayagoitia, A.4
Hansen, K.5
Tkatchenko, A.6
Müller, K.-R.7
Von Lilienfeld, O.A.8
-
3
-
-
84882415695
-
Assessment and validation of machine learning methods for predicting molecular atomization energies
-
K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A. Von Lilienfeld, A. Tkatchenko, and K.-R. Müller. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput., 9(8):3404-3419, 2013.
-
(2013)
J. Chem. Theory Comput.
, vol.9
, Issue.8
, pp. 3404-3419
-
-
Hansen, K.1
Montavon, G.2
Biegler, F.3
Fazli, S.4
Rupp, M.5
Scheffler, M.6
Von Lilienfeld, O.A.7
Tkatchenko, A.8
Müller, K.-R.9
-
4
-
-
84901440781
-
How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
-
K. T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.-R. Müller, and EKU Gross. How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B, 89(20):205118, 2014.
-
(2014)
Phys. Rev. B
, vol.89
, Issue.20
, pp. 205118
-
-
Schütt, K.T.1
Glawe, H.2
Brockherde, F.3
Sanna, A.4
Müller, K.-R.5
Gross, E.6
-
5
-
-
84935014439
-
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
-
K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. von Lilienfeld, K.-R. Müller, and A. Tkatchenko. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett., 6:2326 2015.
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 2326
-
-
Hansen, K.1
Biegler, F.2
Ramakrishnan, R.3
Pronobis, W.4
Von Lilienfeld, O.A.5
Müller, K.-R.6
Tkatchenko, A.7
-
6
-
-
85020766200
-
-
arXiv preprint
-
F. A. Faber, L. Hutchison, B. Huang, Ju. Gilmer, S. S. Schoenholz, G. E. Dahl, O. Vinyals, S. Kearnes, P. F. Riley, and O. A. von Lilienfeld. Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than dft accuracy. arXiv preprint arXiv:1702.05532, 2017.
-
(2017)
Fast Machine Learning Models of Electronic and Energetic Properties Consistently Reach Approximation Errors Better Than DFT Accuracy
-
-
Faber, F.A.1
Hutchison, L.2
Huang, B.3
Gilmer, Ju.4
Schoenholz, S.S.5
Dahl, G.E.6
Vinyals, O.7
Kearnes, S.8
Riley, P.F.9
Von Lilienfeld, O.A.10
-
7
-
-
85031128428
-
Bypassing the kohn-sham equations with machine learning
-
F. Brockherde, L. Voigt, L. Li, M. E. Tuckerman, K. Burke, and K.-R. Müller. Bypassing the Kohn-Sham equations with machine learning. Nature Communications, 8(872), 2017.
-
(2017)
Nature Communications
, vol.8
, Issue.872
-
-
Brockherde, F.1
Voigt, L.2
Li, L.3
Tuckerman, M.E.4
Burke, K.5
Müller, K.-R.6
-
9
-
-
85046997186
-
Solid harmonic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3d electronic densities
-
M. Eickenberg, G. Exarchakis, M. Hirn, and S. Mallat. Solid harmonic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3d electronic densities. In Advances in Neural Information Processing Systems 30, pages 6543-6552. 2017.
-
(2017)
Advances in Neural Information Processing Systems 30
, pp. 6543-6552
-
-
Eickenberg, M.1
Exarchakis, G.2
Hirn, M.3
Mallat, S.4
-
10
-
-
84938679411
-
Quantum chemistry structures and properties of 134 kilo molecules
-
R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.
-
Scientific Data
, vol.1
, pp. 2014
-
-
Ramakrishnan, R.1
Dral, P.O.2
Rupp, M.3
Von Lilienfeld, O.A.4
-
11
-
-
33748257982
-
A random-sampling high dimensional model representation neural network for building potential energy surfaces
-
S. Manzhos and T. Carrington Jr. A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys., 125(8):084109, 2006.
-
(2006)
J. Chem. Phys.
, vol.125
, Issue.8
, pp. 084109
-
-
Manzhos, S.1
Carrington, T.2
-
12
-
-
67249096678
-
Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations
-
R. Malshe, M.and Narulkar, L. M. Raff, M. Hagan, S. Bukkapatnam, P. M. Agrawal, and R. Komanduri. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations. J. Chem. Phys., 130(18):184102, 2009.
-
(2009)
J. Chem. Phys.
, vol.130
, Issue.18
, pp. 184102
-
-
Malshe, R.1
Narulkar, M.2
Raff, L.M.3
Hagan, M.4
Bukkapatnam, S.5
Agrawal, P.M.6
Komanduri, R.7
-
13
-
-
34047127421
-
Generalized neural-network representation of high-dimensional potential-energy surfaces
-
J. Behler and M. Parrinello. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98(14):146401, 2007.
-
(2007)
Phys. Rev. Lett.
, vol.98
, Issue.14
, pp. 146401
-
-
Behler, J.1
Parrinello, M.2
-
14
-
-
77950441864
-
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
-
A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett., 104(13):136403, 2010.
-
(2010)
Phys. Rev. Lett.
, vol.104
, Issue.13
, pp. 136403
-
-
Bartók, A.P.1
Payne, M.C.2
Kondor, R.3
Csányi, G.4
-
15
-
-
79953856961
-
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
-
J. Behler. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys., 134(7):074106, 2011.
-
(2011)
J. Chem. Phys.
, vol.134
, Issue.7
, pp. 074106
-
-
Behler, J.1
-
16
-
-
84878571921
-
On representing chemical environments
-
A. P. Bartók, R. Kondor, and G. Csányi. On representing chemical environments. Phys. Rev. B, 87(18):184115, 2013.
-
(2013)
Phys. Rev. B
, vol.87
, Issue.18
, pp. 184115
-
-
Bartók, A.P.1
Kondor, R.2
Csányi, G.3
-
17
-
-
84965159799
-
Convolutional networks on graphs for learning molecular fingerprints
-
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors
-
D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, NIPS, pages 2224-2232, 2015.
-
(2015)
NIPS
, pp. 2224-2232
-
-
Duvenaud, D.K.1
Maclaurin, D.2
Iparraguirre, J.3
Bombarell, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
18
-
-
84983438115
-
Molecular graph convolutions: Moving beyond fingerprints
-
S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. F. Riley. Molecular graph convolutions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design, 30(8):595-608, 2016.
-
(2016)
Journal of Computer-Aided Molecular Design
, vol.30
, Issue.8
, pp. 595-608
-
-
Kearnes, S.1
McCloskey, K.2
Berndl, M.3
Pande, V.4
Riley, P.F.5
-
19
-
-
85041381183
-
Machine learning of accurate energy-conserving molecular force fields
-
S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R. Müller. Machine learning of accurate energy-conserving molecular force fields. Science Advances, 3(5): e1603015, 2017.
-
(2017)
Science Advances
, vol.3
, Issue.5
, pp. e1603015
-
-
Chmiela, S.1
Tkatchenko, A.2
Sauceda, H.E.3
Poltavsky, I.4
Schütt, K.T.5
Müller, K.-R.6
-
20
-
-
85009110385
-
Quantum-chemical insights from deep tensor neural networks
-
(13890)
-
K. T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Müller, and A. Tkatchenko. Quantum-chemical insights from deep tensor neural networks. Nature Communications, 8(13890), 2017.
-
(2017)
Nature Communications
, vol.8
-
-
Schütt, K.T.1
Arbabzadah, F.2
Chmiela, S.3
Müller, K.-R.4
Tkatchenko, A.5
-
21
-
-
85045254838
-
Neural message passing for quantum chemistry
-
J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning, pages 1263-1272, 2017.
-
(2017)
Proceedings of the 34th International Conference on Machine Learning
, pp. 1263-1272
-
-
Gilmer, J.1
Schoenholz, S.S.2
Riley, P.F.3
Vinyals, O.4
Dahl, G.E.5
-
22
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4): 541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
24
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 1725-1732, 2014.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
25
-
-
85011070895
-
Wavenet: A generative model for raw audio
-
A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. In 9th ISCA Speech Synthesis Workshop, pages 125-125, 2016.
-
(2016)
9th ISCA Speech Synthesis Workshop
, pp. 125
-
-
Van Den Oord, A.1
Dieleman, S.2
Zen, H.3
Simonyan, K.4
Vinyals, O.5
Graves, A.6
Kalchbrenner, N.7
Senior, A.8
Kavukcuoglu, K.9
-
26
-
-
84913612801
-
A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series
-
W. Max-Moerbeck, J. L. Richards, T. Hovatta, V. Pavlidou, T. J. Pearson, and A. C. S. Readhead. A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series. Monthly Notices of the Royal Astronomical Society, 445(1):437-459, 2014.
-
(2014)
Monthly Notices of the Royal Astronomical Society
, vol.445
, Issue.1
, pp. 437-459
-
-
Max-Moerbeck, W.1
Richards, J.L.2
Hovatta, T.3
Pavlidou, V.4
Pearson, T.J.5
Readhead, A.C.S.6
-
27
-
-
84960485441
-
Redfit-x: Cross-spectral analysis of unevenly spaced paleoclimate time series
-
K. B. Ólafsdóttir, M. Schulz, and M. Mudelsee. Redfit-x: Cross-spectral analysis of unevenly spaced paleoclimate time series. Computers & Geosciences, 91:11-18, 2016.
-
(2016)
Computers & Geosciences
, vol.91
, pp. 11-18
-
-
Ólafsdóttir, K.B.1
Schulz, M.2
Mudelsee, M.3
-
29
-
-
84862560607
-
Finding density functionals with machine learning
-
J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, and K. Burke. Finding density functionals with machine learning. Physical review letters, 108(25):253002, 2012.
-
(2012)
Physical Review Letters
, vol.108
, Issue.25
, pp. 253002
-
-
Snyder, J.C.1
Rupp, M.2
Hansen, K.3
Müller, K.-R.4
Burke, K.5
-
30
-
-
85021794262
-
Wavelet scattering regression of quantum chemical energies
-
M. Hirn, S. Mallat, and N. Poilvert. Wavelet scattering regression of quantum chemical energies. Multiscale Modeling & Simulation, 15(2):827-863, 2017.
-
(2017)
Multiscale Modeling & Simulation
, vol.15
, Issue.2
, pp. 827-863
-
-
Hirn, M.1
Mallat, S.2
Poilvert, N.3
-
31
-
-
85083951767
-
Spectral networks and locally connected networks on graphs
-
J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. Spectral networks and locally connected networks on graphs. In ICLR, 2014.
-
(2014)
ICLR
-
-
Bruna, J.1
Zaremba, W.2
Szlam, A.3
Lecun, Y.4
-
33
-
-
84971226905
-
Geodesic convolutional neural networks on riemannian manifolds
-
J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst. Geodesic convolutional neural networks on riemannian manifolds. In Proceedings of the IEEE international conference on computer vision workshops, pages 37-45, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision Workshops
, pp. 37-45
-
-
Masci, J.1
Boscaini, D.2
Bronstein, M.3
Vandergheynst, P.4
-
34
-
-
85018901275
-
Dynamic filter networks
-
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors
-
X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool. Dynamic filter networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 667-675. 2016.
-
(2016)
Advances in Neural Information Processing Systems 29
, pp. 667-675
-
-
Jia, X.1
De Brabandere, B.2
Tuytelaars, T.3
Gool, L.V.4
-
36
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770-778, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
38
-
-
64549148884
-
Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks
-
A Pukrittayakamee, M Malshe, M Hagan, LM Raff, R Narulkar, S Bukkapatnum, and R Komanduri. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks. The Journal of chemical physics, 130(13):134101, 2009.
-
(2009)
The Journal of Chemical Physics
, vol.130
, Issue.13
, pp. 134101
-
-
Pukrittayakamee, A.1
Malshe, M.2
Hagan, M.3
Raff, L.4
Narulkar, R.5
Bukkapatnum, S.6
Komanduri, R.7
-
39
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.P.1
Ba, J.2
-
40
-
-
67649619336
-
970 million druglike small molecules for virtual screening in the chemical universe database GDB-13
-
L. C. Blum and J.-L. Reymond. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc., 131:8732 2009.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 8732
-
-
Blum, L.C.1
Reymond, J.-L.2
-
41
-
-
84925393362
-
The chemical space project
-
J.-L. Reymond. The chemical space project. Acc. Chem. Res., 48(3):722-730, 2015.
-
(2015)
Acc. Chem. Res.
, vol.48
, Issue.3
, pp. 722-730
-
-
Reymond, J.-L.1
|