메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages

Bypassing the Kohn-Sham equations with machine learning

Author keywords

[No Author keywords available]

Indexed keywords

MALONALDEHYDE;

EID: 85031128428     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-017-00839-3     Document Type: Article
Times cited : (739)

References (65)
  • 1
    • 0042113153 scopus 로고
    • Self-consistent equations including exchange and correlation effects
    • Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133-A1138 (1965).
    • (1965) Phys. Rev. , vol.140 , pp. A1133-A1138
    • Kohn, W.1    Sham, L.J.2
  • 3
    • 5944261746 scopus 로고
    • Density-functional approximation for the correlation energy of the inhomogeneous electron gas
    • Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822-8824 (1986).
    • (1986) Phys. Rev. B , vol.33 , pp. 8822-8824
    • Perdew, J.P.1
  • 4
    • 0000189651 scopus 로고
    • Density functional thermochemistry. III. The role of exact exchange
    • Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993).
    • (1993) J. Chem. Phys. , vol.98 , pp. 5648-5652
    • Becke, A.D.1
  • 6
    • 79955634080 scopus 로고    scopus 로고
    • A high-throughput infrastructure for density functional theory calculations
    • Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295-2310 (2011).
    • (2011) Comput. Mater. Sci. , vol.50 , pp. 2295-2310
    • Jain, A.1
  • 7
    • 84862891798 scopus 로고    scopus 로고
    • Optimizing transition states via kernel-based machine learning
    • Pozun, Z. D. et al. Optimizing transition states via kernel-based machine learning. J. Chem. Phys. 136, 174101 (2012).
    • (2012) J. Chem. Phys. , vol.136 , pp. 174101
    • Pozun, Z.D.1
  • 8
    • 84880033049 scopus 로고    scopus 로고
    • Learning kinetic distance metrics for Markov state models of protein conformational dynamics
    • McGibbon, R. T. & Pande, V. S. Learning kinetic distance metrics for Markov state models of protein conformational dynamics. J. Chem. Theory. Comput. 9, 2900-2906 (2013).
    • (2013) J. Chem. Theory. Comput. , vol.9 , pp. 2900-2906
    • McGibbon, R.T.1    Pande, V.S.2
  • 9
    • 84907208731 scopus 로고    scopus 로고
    • Prediction of intramolecular polarization of aromatic amino acids using kriging machine learning
    • Fletcher, T. L., Davie, S. J. & Popelier, P. L. Prediction of intramolecular polarization of aromatic amino acids using kriging machine learning. J. Chem. Theory. Comput. 10, 3708-3719 (2014).
    • (2014) J. Chem. Theory. Comput. , vol.10 , pp. 3708-3719
    • Fletcher, T.L.1    Davie, S.J.2    Popelier, P.L.3
  • 10
    • 84856512353 scopus 로고    scopus 로고
    • Fast and accurate modeling of molecular atomization energies with machine learning
    • Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Müller, K.-R.3    Von Lilienfeld, O.A.4
  • 11
    • 77953628959 scopus 로고    scopus 로고
    • Finding nature's missing ternary oxide compounds using machine learning and density functional theory
    • Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature's missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762-3767 (2010).
    • (2010) Chem. Mater. , vol.22 , pp. 3762-3767
    • Hautier, G.1    Fischer, C.C.2    Jain, A.3    Mueller, T.4    Ceder, G.5
  • 12
    • 84882415695 scopus 로고    scopus 로고
    • Assessment and validation of machine learning methods for predicting molecular atomization energies
    • Hansen, K. et al. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404-3419 (2013).
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 3404-3419
    • Hansen, K.1
  • 13
    • 84901440781 scopus 로고    scopus 로고
    • How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
    • Schütt, K. T. et al. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
    • (2014) Phys. Rev. B , vol.89 , pp. 205118
    • Schütt, K.T.1
  • 14
    • 84935014439 scopus 로고    scopus 로고
    • Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
    • Hansen, K. et al. Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326-2331. PMID: 26113956 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 2326-2331
    • Hansen, K.1
  • 16
    • 34047127421 scopus 로고    scopus 로고
    • Generalized neural-network representation of high-dimensional potential-energy surfaces
    • Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 17
    • 84904323640 scopus 로고    scopus 로고
    • Sparse representation for a potential energy surface
    • Seko, A., Takahashi, A. & Tanaka, I. Sparse representation for a potential energy surface. Phys. Rev. B 90, 024101 (2014).
    • (2014) Phys. Rev. B , vol.90 , pp. 024101
    • Seko, A.1    Takahashi, A.2    Tanaka, I.3
  • 18
    • 84924365603 scopus 로고    scopus 로고
    • Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
    • Li, Z., Kermode, J. R. & De Vita, A. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).
    • (2015) Phys. Rev. Lett. , vol.114 , pp. 096405
    • Li, Z.1    Kermode, J.R.2    De Vita, A.3
  • 19
    • 85041381183 scopus 로고    scopus 로고
    • Machine learning of accurate energy-conserving molecular force fields
    • Chmiela, S. et al. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).
    • (2017) Sci. Adv. , vol.3 , pp. e1603015
    • Chmiela, S.1
  • 21
    • 84903362304 scopus 로고    scopus 로고
    • Orbital-free bond breaking via machine learning
    • Snyder, J. C. et al. Orbital-free bond breaking via machine learning. J. Chem. Phys. 139, 224104 (2013).
    • (2013) J. Chem. Phys. , vol.139 , pp. 224104
    • Snyder, J.C.1
  • 22
    • 84947256057 scopus 로고    scopus 로고
    • Understanding machine-learned density functionals
    • Li, L. et al. Understanding machine-learned density functionals. Int. J. Quantum Chem. 116, 819-833 (2016).
    • (2016) Int. J. Quantum Chem. , vol.116 , pp. 819-833
    • Li, L.1
  • 23
    • 85009820909 scopus 로고    scopus 로고
    • Pure density functional for strong correlation and the thermodynamic limit from machine learning
    • Li, L., Baker, T. E., White, S. R. & Burke, K. Pure density functional for strong correlation and the thermodynamic limit from machine learning. Phys. Rev. B 94, 245129 (2016).
    • (2016) Phys. Rev. B , vol.94 , pp. 245129
    • Li, L.1    Baker, T.E.2    White, S.R.3    Burke, K.4
  • 24
    • 84960365255 scopus 로고    scopus 로고
    • Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks
    • Yao, K. & Parkhill, J Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks. J. Chem. Theory Comput. 12, 1139-1147 (2016).
    • (2016) J. Chem. Theory Comput. , vol.12 , pp. 1139-1147
    • Yao, K.1    Parkhill, J.2
  • 25
    • 70349568754 scopus 로고    scopus 로고
    • QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
    • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009).
    • (2009) J. Phys. Condens. Matter. , vol.21 , pp. 395502
    • Giannozzi, P.1
  • 27
    • 84936751541 scopus 로고    scopus 로고
    • Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives
    • Snyder, J. C., Rupp, M., Müller, K.-R. & Burke, K. Nonlinear gradient denoising: finding accurate extrema from inaccurate functional derivatives. Int. J. Quantum. Chem. 115, 1102-1114 (2015).
    • (2015) Int. J. Quantum. Chem. , vol.115 , pp. 1102-1114
    • Snyder, J.C.1    Rupp, M.2    Müller, K.-R.3    Burke, K.4
  • 28
    • 84922383088 scopus 로고    scopus 로고
    • Corrections to Thomas-Fermi densities at turning points and beyond
    • Ribeiro, R. F., Lee, D., Cangi, A., Elliott, P. & Burke, K. Corrections to Thomas-Fermi densities at turning points and beyond. Phys. Rev. Lett. 114, 050401 (2015).
    • (2015) Phys. Rev. Lett. , vol.114 , pp. 050401
    • Ribeiro, R.F.1    Lee, D.2    Cangi, A.3    Elliott, P.4    Burke, K.5
  • 30
    • 84882581023 scopus 로고    scopus 로고
    • Understanding and reducing errors in density functional calculations
    • Kim, M.-C., Sim, E. & Burke, K. Understanding and reducing errors in density functional calculations. Phys. Rev. Lett. 111, 073003 (2013).
    • (2013) Phys. Rev. Lett. , vol.111 , pp. 073003
    • Kim, M.-C.1    Sim, E.2    Burke, K.3
  • 31
    • 84904804383 scopus 로고    scopus 로고
    • Ions in solution: Density corrected density functional theory (DC-DFT)
    • Kim, M.-C., Sim, E. & Burke, K. Ions in solution: density corrected density functional theory (DC-DFT). J. Chem. Phys. 140, 18A528 (2014).
    • (2014) J. Chem. Phys. , vol.140 , pp. 18A528
    • Kim, M.-C.1    Sim, E.2    Burke, K.3
  • 32
    • 84942865001 scopus 로고    scopus 로고
    • Improved DFT potential energy surfaces via improved densities
    • Kim, M.-C., Park, H., Son, S., Sim, E. & Burke, K. Improved DFT potential energy surfaces via improved densities. J. Phys. Chem. Lett. 6, 3802-3807 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 3802-3807
    • Kim, M.-C.1    Park, H.2    Son, S.3    Sim, E.4    Burke, K.5
  • 34
    • 0032594954 scopus 로고    scopus 로고
    • Input space versus feature space in kernel-based methods
    • Schölkopf, B. et al. Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 10, 1000-1017 (1999).
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 1000-1017
    • Schölkopf, B.1
  • 35
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A. & Müller, K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299-1319 (1998).
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 36
    • 4243943295 scopus 로고    scopus 로고
    • Generalized gradient approximation made simple
    • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 3865-3868
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 37
    • 0011236321 scopus 로고    scopus 로고
    • From ultrasoft pseudopotentials to the projector augmented-wave method
    • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999).
    • (1999) Phys. Rev. B , vol.59 , pp. 1758-1775
    • Kresse, G.1    Joubert, D.2
  • 38
    • 25744460922 scopus 로고
    • Projector augmented-wave method
    • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994).
    • (1994) Phys. Rev. B , vol.50 , pp. 17953-17979
    • Blöchl, P.E.1
  • 39
    • 77950441864 scopus 로고    scopus 로고
    • Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
    • Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 136403
    • Bartók, A.P.1    Payne, M.C.2    Kondor, R.3    Csányi, G.4
  • 40
    • 0001008029 scopus 로고
    • An efficient method for finding the minimum of a function of several variables without calculating derivatives
    • Powell, M. J. D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155-162 (1964).
    • (1964) Comput. J. , vol.7 , pp. 155-162
    • Powell, M.J.D.1
  • 42
    • 0034625286 scopus 로고    scopus 로고
    • Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers
    • Tuckerman, M. E., Yarne, D., Samuelson, S. O., Hughes, A. L. & Martyna, G. J. Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers. Comput. Phys. Commun. 128, 333-376 (2000).
    • (2000) Comput. Phys. Commun. , vol.128 , pp. 333-376
    • Tuckerman, M.E.1    Yarne, D.2    Samuelson, S.O.3    Hughes, A.L.4    Martyna, G.J.5
  • 43
    • 26144450583 scopus 로고
    • Self-interaction correction to density-functional approximations for many-electron systems
    • Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048-5079 (1981).
    • (1981) Phys. Rev. B , vol.23 , pp. 5048-5079
    • Perdew, J.P.1    Zunger, A.2
  • 44
    • 0035926862 scopus 로고    scopus 로고
    • Heavy-atom skeleton quantization and proton tunneling in "intermediate-barrier" hydrogen bonds
    • Tuckerman, M. E. & Marx, D. Heavy-atom skeleton quantization and proton tunneling in "intermediate-barrier" hydrogen bonds. Phys. Rev. Lett. 86, 4946-4949 (2001).
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 4946-4949
    • Tuckerman, M.E.1    Marx, D.2
  • 46
    • 79960651663 scopus 로고    scopus 로고
    • Electronic structure via potential functional approximations
    • Cangi, A., Lee, D., Elliott, P., Burke, K. & Gross, E. K. U. Electronic structure via potential functional approximations. Phys. Rev. Lett. 106, 236404 (2011).
    • (2011) Phys. Rev. Lett. , vol.106 , pp. 236404
    • Cangi, A.1    Lee, D.2    Elliott, P.3    Burke, K.4    Gross, E.K.U.5
  • 47
    • 10644250257 scopus 로고
    • Inhomogeneous electron gas
    • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev 136, B864-B871 (1964).
    • (1964) Phys. Rev , vol.136 , pp. B864-B871
    • Hohenberg, P.1    Kohn, W.2
  • 48
    • 33645426115 scopus 로고
    • Efficient pseudopotentials for plane-wave calculations
    • Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993-2006 (1991).
    • (1991) Phys. Rev. B , vol.43 , pp. 1993-2006
    • Troullier, N.1    Martins, J.L.2
  • 50
    • 84936800623 scopus 로고    scopus 로고
    • Understanding Kernel ridge regression: Common behaviors from simple functions to density functionals
    • Vu, K. et al. Understanding Kernel ridge regression: common behaviors from simple functions to density functionals. Int. J. Quantum. Chem. 115, 1115-1128 (2015).
    • (2015) Int. J. Quantum. Chem. , vol.115 , pp. 1115-1128
    • Vu, K.1
  • 52
    • 37149036190 scopus 로고    scopus 로고
    • A simple and efficient CCSD(T)-F12 approximation
    • Adler, T. B., Knizia, G. & Werner, H.-J. A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127, 221106-224100 (2007).
    • (2007) J. Chem. Phys. , vol.127 , pp. 221106-224100
    • Adler, T.B.1    Knizia, G.2    Werner, H.-J.3
  • 53
    • 0346758091 scopus 로고    scopus 로고
    • Antechamber: An accessory software package for molecular mechanical calculations
    • Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Antechamber: an accessory software package for molecular mechanical calculations. J. Am. Chem. Soc. 222, U403 (2001).
    • (2001) J. Am. Chem. Soc. , vol.222 , pp. U403
    • Wang, J.1    Wang, W.2    Kollman, P.A.3    Case, D.A.4
  • 55
    • 3042524904 scopus 로고
    • A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
    • Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269-10280 (1993).
    • (1993) J. Phys. Chem. , vol.97 , pp. 10269-10280
    • Bayly, C.I.1    Cieplak, P.2    Cornell, W.3    Kollman, P.A.4
  • 56
    • 36449000062 scopus 로고
    • Nosé-hoover chains: The canonical ensemble via continuous dynamics
    • Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé-hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635-2643 (1992).
    • (1992) J. Chem. Phys. , vol.97 , pp. 2635-2643
    • Martyna, G.J.1    Klein, M.L.2    Tuckerman, M.3
  • 57
    • 33646650705 scopus 로고
    • Reversible multiple time scale molecular dynamics
    • Tuckerman, M., Berne, B. J. & Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990-2001 (1992).
    • (1992) J. Chem. Phys. , vol.97 , pp. 1990-2001
    • Tuckerman, M.1    Berne, B.J.2    Martyna, G.J.3
  • 58
    • 15344345714 scopus 로고    scopus 로고
    • Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
    • VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103-128 (2005).
    • (2005) Comput. Phys. Commun. , vol.167 , pp. 103-128
    • VandeVondele, J.1
  • 60
    • 0000620023 scopus 로고    scopus 로고
    • A hybrid Gaussian and plane wave density functional scheme
    • Lippert, G., Hutter, J. & Parrinello, M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477-488 (2010).
    • (2010) Mol. Phys. , vol.92 , pp. 477-488
    • Lippert, G.1    Hutter, J.2    Parrinello, M.3
  • 61
    • 34648843516 scopus 로고    scopus 로고
    • Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
    • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).
    • (2007) J. Chem. Phys. , vol.127 , pp. 114105
    • VandeVondele, J.1    Hutter, J.2
  • 62
    • 0000160164 scopus 로고    scopus 로고
    • Separable dual-space Gaussian pseudopotentials
    • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703-1710 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 1703-1710
    • Goedecker, S.1    Teter, M.2    Hutter, J.3
  • 63
    • 25144446255 scopus 로고    scopus 로고
    • Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
    • Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chim. Acta 114, 145-152 (2005).
    • (2005) Theor. Chim. Acta , vol.114 , pp. 145-152
    • Krack, M.1
  • 64
    • 0037426171 scopus 로고    scopus 로고
    • An efficient orbital transformation method for electronic structure calculations
    • VandeVondele, J. & Hutter, J. An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118, 4365 (2003).
    • (2003) J. Chem. Phys. , vol.118 , pp. 4365
    • VandeVondele, J.1    Hutter, J.2
  • 65
    • 0036572216 scopus 로고    scopus 로고
    • An object-oriented scripting interface to a legacy electronic structure code
    • Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56-66 (2002).
    • (2002) Comput. Sci. Eng. , vol.4 , pp. 56-66
    • Bahn, S.R.1    Jacobsen, K.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.