-
1
-
-
0042113153
-
Self-consistent equations including exchange and correlation effects
-
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133-A1138 (1965).
-
(1965)
Phys. Rev.
, vol.140
, pp. A1133-A1138
-
-
Kohn, W.1
Sham, L.J.2
-
2
-
-
84926430846
-
DFT: A theory full of holes?
-
Pribram-Jones, A., Gross, D. A. & Burke, K. DFT: a theory full of holes? Annu. Rev. Phys. Chem. 66, 283-304 (2015).
-
(2015)
Annu. Rev. Phys. Chem.
, vol.66
, pp. 283-304
-
-
Pribram-Jones, A.1
Gross, D.A.2
Burke, K.3
-
3
-
-
5944261746
-
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
-
Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822-8824 (1986).
-
(1986)
Phys. Rev. B
, vol.33
, pp. 8822-8824
-
-
Perdew, J.P.1
-
4
-
-
0000189651
-
Density functional thermochemistry. III. The role of exact exchange
-
Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993).
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 5648-5652
-
-
Becke, A.D.1
-
6
-
-
79955634080
-
A high-throughput infrastructure for density functional theory calculations
-
Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295-2310 (2011).
-
(2011)
Comput. Mater. Sci.
, vol.50
, pp. 2295-2310
-
-
Jain, A.1
-
7
-
-
84862891798
-
Optimizing transition states via kernel-based machine learning
-
Pozun, Z. D. et al. Optimizing transition states via kernel-based machine learning. J. Chem. Phys. 136, 174101 (2012).
-
(2012)
J. Chem. Phys.
, vol.136
, pp. 174101
-
-
Pozun, Z.D.1
-
8
-
-
84880033049
-
Learning kinetic distance metrics for Markov state models of protein conformational dynamics
-
McGibbon, R. T. & Pande, V. S. Learning kinetic distance metrics for Markov state models of protein conformational dynamics. J. Chem. Theory. Comput. 9, 2900-2906 (2013).
-
(2013)
J. Chem. Theory. Comput.
, vol.9
, pp. 2900-2906
-
-
McGibbon, R.T.1
Pande, V.S.2
-
9
-
-
84907208731
-
Prediction of intramolecular polarization of aromatic amino acids using kriging machine learning
-
Fletcher, T. L., Davie, S. J. & Popelier, P. L. Prediction of intramolecular polarization of aromatic amino acids using kriging machine learning. J. Chem. Theory. Comput. 10, 3708-3719 (2014).
-
(2014)
J. Chem. Theory. Comput.
, vol.10
, pp. 3708-3719
-
-
Fletcher, T.L.1
Davie, S.J.2
Popelier, P.L.3
-
10
-
-
84856512353
-
Fast and accurate modeling of molecular atomization energies with machine learning
-
Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 058301
-
-
Rupp, M.1
Tkatchenko, A.2
Müller, K.-R.3
Von Lilienfeld, O.A.4
-
11
-
-
77953628959
-
Finding nature's missing ternary oxide compounds using machine learning and density functional theory
-
Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature's missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762-3767 (2010).
-
(2010)
Chem. Mater.
, vol.22
, pp. 3762-3767
-
-
Hautier, G.1
Fischer, C.C.2
Jain, A.3
Mueller, T.4
Ceder, G.5
-
12
-
-
84882415695
-
Assessment and validation of machine learning methods for predicting molecular atomization energies
-
Hansen, K. et al. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404-3419 (2013).
-
(2013)
J. Chem. Theory Comput.
, vol.9
, pp. 3404-3419
-
-
Hansen, K.1
-
13
-
-
84901440781
-
How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
-
Schütt, K. T. et al. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
-
(2014)
Phys. Rev. B
, vol.89
, pp. 205118
-
-
Schütt, K.T.1
-
14
-
-
84935014439
-
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
-
Hansen, K. et al. Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326-2331. PMID: 26113956 (2015).
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 2326-2331
-
-
Hansen, K.1
-
15
-
-
85009110385
-
Quantum-chemical insights from deep tensor neural networks
-
Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A. Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 13890
-
-
Schütt, K.T.1
Arbabzadah, F.2
Chmiela, S.3
Müller, K.R.4
Tkatchenko, A.5
-
16
-
-
34047127421
-
Generalized neural-network representation of high-dimensional potential-energy surfaces
-
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 146401
-
-
Behler, J.1
Parrinello, M.2
-
17
-
-
84904323640
-
Sparse representation for a potential energy surface
-
Seko, A., Takahashi, A. & Tanaka, I. Sparse representation for a potential energy surface. Phys. Rev. B 90, 024101 (2014).
-
(2014)
Phys. Rev. B
, vol.90
, pp. 024101
-
-
Seko, A.1
Takahashi, A.2
Tanaka, I.3
-
18
-
-
84924365603
-
Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
-
Li, Z., Kermode, J. R. & De Vita, A. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).
-
(2015)
Phys. Rev. Lett.
, vol.114
, pp. 096405
-
-
Li, Z.1
Kermode, J.R.2
De Vita, A.3
-
19
-
-
85041381183
-
Machine learning of accurate energy-conserving molecular force fields
-
Chmiela, S. et al. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).
-
(2017)
Sci. Adv.
, vol.3
, pp. e1603015
-
-
Chmiela, S.1
-
20
-
-
84862560607
-
Finding density functionals with machine learning
-
Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 253002
-
-
Snyder, J.C.1
Rupp, M.2
Hansen, K.3
Müller, K.-R.4
Burke, K.5
-
21
-
-
84903362304
-
Orbital-free bond breaking via machine learning
-
Snyder, J. C. et al. Orbital-free bond breaking via machine learning. J. Chem. Phys. 139, 224104 (2013).
-
(2013)
J. Chem. Phys.
, vol.139
, pp. 224104
-
-
Snyder, J.C.1
-
22
-
-
84947256057
-
Understanding machine-learned density functionals
-
Li, L. et al. Understanding machine-learned density functionals. Int. J. Quantum Chem. 116, 819-833 (2016).
-
(2016)
Int. J. Quantum Chem.
, vol.116
, pp. 819-833
-
-
Li, L.1
-
23
-
-
85009820909
-
Pure density functional for strong correlation and the thermodynamic limit from machine learning
-
Li, L., Baker, T. E., White, S. R. & Burke, K. Pure density functional for strong correlation and the thermodynamic limit from machine learning. Phys. Rev. B 94, 245129 (2016).
-
(2016)
Phys. Rev. B
, vol.94
, pp. 245129
-
-
Li, L.1
Baker, T.E.2
White, S.R.3
Burke, K.4
-
24
-
-
84960365255
-
Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks
-
Yao, K. & Parkhill, J Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks. J. Chem. Theory Comput. 12, 1139-1147 (2016).
-
(2016)
J. Chem. Theory Comput.
, vol.12
, pp. 1139-1147
-
-
Yao, K.1
Parkhill, J.2
-
25
-
-
70349568754
-
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
-
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009).
-
(2009)
J. Phys. Condens. Matter.
, vol.21
, pp. 395502
-
-
Giannozzi, P.1
-
26
-
-
85031107848
-
-
(eds Schölkopf B. Luo Z. & Vovk V.) Springer
-
Snyder, J. C., Mika, S., Burke, K. & Müller, K.-R. in Empirical Inference (eds Schölkopf, B., Luo, Z. & Vovk, V.) 245-259 (Springer, 2013).
-
(2013)
Empirical Inference
, pp. 245-259
-
-
Snyder, J.C.1
Mika, S.2
Burke, K.3
Müller, K.-R.4
-
27
-
-
84936751541
-
Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives
-
Snyder, J. C., Rupp, M., Müller, K.-R. & Burke, K. Nonlinear gradient denoising: finding accurate extrema from inaccurate functional derivatives. Int. J. Quantum. Chem. 115, 1102-1114 (2015).
-
(2015)
Int. J. Quantum. Chem.
, vol.115
, pp. 1102-1114
-
-
Snyder, J.C.1
Rupp, M.2
Müller, K.-R.3
Burke, K.4
-
28
-
-
84922383088
-
Corrections to Thomas-Fermi densities at turning points and beyond
-
Ribeiro, R. F., Lee, D., Cangi, A., Elliott, P. & Burke, K. Corrections to Thomas-Fermi densities at turning points and beyond. Phys. Rev. Lett. 114, 050401 (2015).
-
(2015)
Phys. Rev. Lett.
, vol.114
, pp. 050401
-
-
Ribeiro, R.F.1
Lee, D.2
Cangi, A.3
Elliott, P.4
Burke, K.5
-
29
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K. & Schölkopf, B. An introduction to kernel-based learning algorithms. IEEE Trans. Neural. Netw. 12, 181-201 (2001).
-
(2001)
IEEE Trans. Neural. Netw.
, vol.12
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
30
-
-
84882581023
-
Understanding and reducing errors in density functional calculations
-
Kim, M.-C., Sim, E. & Burke, K. Understanding and reducing errors in density functional calculations. Phys. Rev. Lett. 111, 073003 (2013).
-
(2013)
Phys. Rev. Lett.
, vol.111
, pp. 073003
-
-
Kim, M.-C.1
Sim, E.2
Burke, K.3
-
31
-
-
84904804383
-
Ions in solution: Density corrected density functional theory (DC-DFT)
-
Kim, M.-C., Sim, E. & Burke, K. Ions in solution: density corrected density functional theory (DC-DFT). J. Chem. Phys. 140, 18A528 (2014).
-
(2014)
J. Chem. Phys.
, vol.140
, pp. 18A528
-
-
Kim, M.-C.1
Sim, E.2
Burke, K.3
-
32
-
-
84942865001
-
Improved DFT potential energy surfaces via improved densities
-
Kim, M.-C., Park, H., Son, S., Sim, E. & Burke, K. Improved DFT potential energy surfaces via improved densities. J. Phys. Chem. Lett. 6, 3802-3807 (2015).
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 3802-3807
-
-
Kim, M.-C.1
Park, H.2
Son, S.3
Sim, E.4
Burke, K.5
-
34
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
Schölkopf, B. et al. Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 10, 1000-1017 (1999).
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, pp. 1000-1017
-
-
Schölkopf, B.1
-
35
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf, B., Smola, A. & Müller, K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299-1319 (1998).
-
(1998)
Neural Comput.
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
36
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
37
-
-
0011236321
-
From ultrasoft pseudopotentials to the projector augmented-wave method
-
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758-1775
-
-
Kresse, G.1
Joubert, D.2
-
38
-
-
25744460922
-
Projector augmented-wave method
-
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953-17979
-
-
Blöchl, P.E.1
-
39
-
-
77950441864
-
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
-
Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 136403
-
-
Bartók, A.P.1
Payne, M.C.2
Kondor, R.3
Csányi, G.4
-
40
-
-
0001008029
-
An efficient method for finding the minimum of a function of several variables without calculating derivatives
-
Powell, M. J. D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155-162 (1964).
-
(1964)
Comput. J.
, vol.7
, pp. 155-162
-
-
Powell, M.J.D.1
-
41
-
-
2942532422
-
Development and testing of a general Amber force field
-
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general Amber force field. J. Comput. Chem. 25, 1157-1174 (2004).
-
(2004)
J. Comput. Chem.
, vol.25
, pp. 1157-1174
-
-
Wang, J.1
Wolf, R.M.2
Caldwell, J.W.3
Kollman, P.A.4
Case, D.A.5
-
42
-
-
0034625286
-
Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers
-
Tuckerman, M. E., Yarne, D., Samuelson, S. O., Hughes, A. L. & Martyna, G. J. Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers. Comput. Phys. Commun. 128, 333-376 (2000).
-
(2000)
Comput. Phys. Commun.
, vol.128
, pp. 333-376
-
-
Tuckerman, M.E.1
Yarne, D.2
Samuelson, S.O.3
Hughes, A.L.4
Martyna, G.J.5
-
43
-
-
26144450583
-
Self-interaction correction to density-functional approximations for many-electron systems
-
Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048-5079 (1981).
-
(1981)
Phys. Rev. B
, vol.23
, pp. 5048-5079
-
-
Perdew, J.P.1
Zunger, A.2
-
44
-
-
0035926862
-
Heavy-atom skeleton quantization and proton tunneling in "intermediate-barrier" hydrogen bonds
-
Tuckerman, M. E. & Marx, D. Heavy-atom skeleton quantization and proton tunneling in "intermediate-barrier" hydrogen bonds. Phys. Rev. Lett. 86, 4946-4949 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 4946-4949
-
-
Tuckerman, M.E.1
Marx, D.2
-
46
-
-
79960651663
-
Electronic structure via potential functional approximations
-
Cangi, A., Lee, D., Elliott, P., Burke, K. & Gross, E. K. U. Electronic structure via potential functional approximations. Phys. Rev. Lett. 106, 236404 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 236404
-
-
Cangi, A.1
Lee, D.2
Elliott, P.3
Burke, K.4
Gross, E.K.U.5
-
47
-
-
10644250257
-
Inhomogeneous electron gas
-
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev 136, B864-B871 (1964).
-
(1964)
Phys. Rev
, vol.136
, pp. B864-B871
-
-
Hohenberg, P.1
Kohn, W.2
-
48
-
-
33645426115
-
Efficient pseudopotentials for plane-wave calculations
-
Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993-2006 (1991).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 1993-2006
-
-
Troullier, N.1
Martins, J.L.2
-
49
-
-
0003684449
-
-
Springer
-
Hastie, T., Tibshirani, R. & Friedman, J. in The Elements of Statistical Learning-Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).
-
(2009)
The Elements of Statistical Learning-Data Mining, Inference, and Prediction 2nd Edn
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
50
-
-
84936800623
-
Understanding Kernel ridge regression: Common behaviors from simple functions to density functionals
-
Vu, K. et al. Understanding Kernel ridge regression: common behaviors from simple functions to density functionals. Int. J. Quantum. Chem. 115, 1115-1128 (2015).
-
(2015)
Int. J. Quantum. Chem.
, vol.115
, pp. 1115-1128
-
-
Vu, K.1
-
52
-
-
37149036190
-
A simple and efficient CCSD(T)-F12 approximation
-
Adler, T. B., Knizia, G. & Werner, H.-J. A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127, 221106-224100 (2007).
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 221106-224100
-
-
Adler, T.B.1
Knizia, G.2
Werner, H.-J.3
-
53
-
-
0346758091
-
Antechamber: An accessory software package for molecular mechanical calculations
-
Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Antechamber: an accessory software package for molecular mechanical calculations. J. Am. Chem. Soc. 222, U403 (2001).
-
(2001)
J. Am. Chem. Soc.
, vol.222
, pp. U403
-
-
Wang, J.1
Wang, W.2
Kollman, P.A.3
Case, D.A.4
-
55
-
-
3042524904
-
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
-
Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269-10280 (1993).
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 10269-10280
-
-
Bayly, C.I.1
Cieplak, P.2
Cornell, W.3
Kollman, P.A.4
-
56
-
-
36449000062
-
Nosé-hoover chains: The canonical ensemble via continuous dynamics
-
Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé-hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635-2643 (1992).
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 2635-2643
-
-
Martyna, G.J.1
Klein, M.L.2
Tuckerman, M.3
-
57
-
-
33646650705
-
Reversible multiple time scale molecular dynamics
-
Tuckerman, M., Berne, B. J. & Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990-2001 (1992).
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 1990-2001
-
-
Tuckerman, M.1
Berne, B.J.2
Martyna, G.J.3
-
58
-
-
15344345714
-
Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
-
VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103-128 (2005).
-
(2005)
Comput. Phys. Commun.
, vol.167
, pp. 103-128
-
-
VandeVondele, J.1
-
59
-
-
84890787332
-
CP2K: Atomistic simulations of condensed matter systems
-
Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Comput. Mol. Sci. 4, 15-25 (2014).
-
(2014)
Comput. Mol. Sci.
, vol.4
, pp. 15-25
-
-
Hutter, J.1
Iannuzzi, M.2
Schiffmann, F.3
VandeVondele, J.4
-
60
-
-
0000620023
-
A hybrid Gaussian and plane wave density functional scheme
-
Lippert, G., Hutter, J. & Parrinello, M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477-488 (2010).
-
(2010)
Mol. Phys.
, vol.92
, pp. 477-488
-
-
Lippert, G.1
Hutter, J.2
Parrinello, M.3
-
61
-
-
34648843516
-
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
-
VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 114105
-
-
VandeVondele, J.1
Hutter, J.2
-
62
-
-
0000160164
-
Separable dual-space Gaussian pseudopotentials
-
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703-1710 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 1703-1710
-
-
Goedecker, S.1
Teter, M.2
Hutter, J.3
-
63
-
-
25144446255
-
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
-
Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chim. Acta 114, 145-152 (2005).
-
(2005)
Theor. Chim. Acta
, vol.114
, pp. 145-152
-
-
Krack, M.1
-
64
-
-
0037426171
-
An efficient orbital transformation method for electronic structure calculations
-
VandeVondele, J. & Hutter, J. An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118, 4365 (2003).
-
(2003)
J. Chem. Phys.
, vol.118
, pp. 4365
-
-
VandeVondele, J.1
Hutter, J.2
-
65
-
-
0036572216
-
An object-oriented scripting interface to a legacy electronic structure code
-
Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56-66 (2002).
-
(2002)
Comput. Sci. Eng.
, vol.4
, pp. 56-66
-
-
Bahn, S.R.1
Jacobsen, K.W.2
|