메뉴 건너뛰기




Volumn 30, Issue 8, 2016, Pages 595-608

Molecular graph convolutions: moving beyond fingerprints

Author keywords

Artificial neural networks; Deep learning; Machine learning; Molecular descriptors; Virtual screening

Indexed keywords

DEEP NEURAL NETWORKS; E-LEARNING; ENCODING (SYMBOLS); GRAPHIC METHODS; SIGNAL ENCODING;

EID: 84983438115     PISSN: 0920654X     EISSN: 15734951     Source Type: Journal    
DOI: 10.1007/s10822-016-9938-8     Document Type: Article
Times cited : (1580)

References (42)
  • 2
    • 34547260921 scopus 로고    scopus 로고
    • Ultrafast shape recognition to search compound databases for similar molecular shapes
    • COI: 1:CAS:528:DC%2BD2sXmsFektLo%3D
    • Ballester PJ, Richards WG (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28(10):1711–1723
    • (2007) J Comput Chem , vol.28 , Issue.10 , pp. 1711-1723
    • Ballester, P.J.1    Richards, W.G.2
  • 4
    • 33845379303 scopus 로고
    • Atom pairs as molecular features in structure-activity studies: definition and applications
    • COI: 1:CAS:528:DyaL2MXitVehu7o%3D
    • Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 25(2):64–73
    • (1985) J Chem Inf Comput Sci , vol.25 , Issue.2 , pp. 64-73
    • Carhart, R.E.1    Smith, D.H.2    Venkataraghavan, R.3
  • 5
    • 84987949998 scopus 로고    scopus 로고
    • Dahl G (2012) Deep learning how I did it: Merck 1st place interview.
    • Dahl G (2012) Deep learning how I did it: Merck 1st place interview.http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview
  • 7
    • 84988006211 scopus 로고    scopus 로고
    • Classifying plankton with deep neural networks
    • Dieleman S (2015) Classifying plankton with deep neural networks. 17 Mar 2015. http://benanne.github.io/2015/03/17/plankton.html
    • (2015) 17 Mar 2015
    • Dieleman, S.1
  • 8
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159
    • (2011) J Mach Learn Res , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 10
    • 49149147973 scopus 로고
    • Iterative partial equalization of orbital electronegativity–a rapid access to atomic charges
    • COI: 1:CAS:528:DyaL3MXhslCjtbs%3D
    • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity–a rapid access to atomic charges. Tetrahedron 36(22):3219–3228
    • (1980) Tetrahedron , vol.36 , Issue.22 , pp. 3219-3228
    • Gasteiger, J.1    Marsili, M.2
  • 11
    • 33846212271 scopus 로고    scopus 로고
    • Comparison of shape-matching and docking as virtual screening tools
    • COI: 1:CAS:528:DC%2BD28Xhtlansb%2FF
    • Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82
    • (2007) J Med Chem , vol.50 , Issue.1 , pp. 74-82
    • Hawkins, P.C.D.1    Skillman, A.G.2    Nicholls, A.3
  • 13
    • 41349106542 scopus 로고    scopus 로고
    • Recommendations for evaluation of computational methods
    • COI: 1:CAS:528:DC%2BD1cXjsFOnsb0%3D
    • Jain AN, Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22(3–4):133–139
    • (2008) J Comput Aided Mol Des , vol.22 , Issue.3-4 , pp. 133-139
    • Jain, A.N.1    Nicholls, A.2
  • 14
    • 84987962764 scopus 로고    scopus 로고
    • Landrum G (2014) RDKit: open-source cheminformatics.
    • Landrum G (2014) RDKit: open-source cheminformatics. http://www.rdkit.org
  • 15
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • COI: 1:CAS:528:DC%2BC2MXht1WlurzP
    • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 16
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
    • COI: 1:CAS:528:DC%2BC3sXpvVGht7g%3D
    • Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53(7):1563–1575
    • (2013) J Chem Inf Model , vol.53 , Issue.7 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 17
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure–activity relationships
    • COI: 1:CAS:528:DC%2BC2MXhvFGns70%3D
    • Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model 55(2):263–274
    • (2015) J Chem Inf Model , vol.55 , Issue.2 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 18
    • 84987962735 scopus 로고    scopus 로고
    • Geodesic convolutional neural networks on riemannian manifolds. In: Proceedings of the IEEE international conference on computer vision workshops
    • Masci J, Boscaini D, Bronstein M, Vandergheynst P (2015) Geodesic convolutional neural networks on riemannian manifolds. In: Proceedings of the IEEE international conference on computer vision workshops, pp 37–45
    • (2015) pp 37–45
    • Masci, J.1    Boscaini, D.2    Bronstein, M.3    Vandergheynst, P.4
  • 21
    • 26944503086 scopus 로고    scopus 로고
    • Automatic generation of complementary descriptors with molecular graph networks
    • COI: 1:CAS:528:DC%2BD2MXmvFSktb4%3D
    • Merkwirth C, Lengauer T (2005) Automatic generation of complementary descriptors with molecular graph networks. J Chem Inf Model 45(5):1159–1168
    • (2005) J Chem Inf Model , vol.45 , Issue.5 , pp. 1159-1168
    • Merkwirth, C.1    Lengauer, T.2
  • 22
    • 63049119992 scopus 로고    scopus 로고
    • Neural network for graphs: a contextual constructive approach
    • Micheli A (2009) Neural network for graphs: a contextual constructive approach. IEEE Trans Neural Netw 20(3):498–511
    • (2009) IEEE Trans Neural Netw , vol.20 , Issue.3 , pp. 498-511
    • Micheli, A.1
  • 23
    • 33745078578 scopus 로고    scopus 로고
    • The use of three-dimensional shape and electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor 1 antagonist
    • COI: 1:CAS:528:DC%2BD28XktFSht7g%3D
    • Muchmore SW, Souers AJ, Akritopoulou-Zanze I (2006) The use of three-dimensional shape and electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor 1 antagonist. Chem Biol Drug Des 67(2):174–176
    • (2006) Chem Biol Drug Des , vol.67 , Issue.2 , pp. 174-176
    • Muchmore, S.W.1    Souers, A.J.2    Akritopoulou-Zanze, I.3
  • 24
    • 84864264343 scopus 로고    scopus 로고
    • Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking
    • COI: 1:CAS:528:DC%2BC38XovFaku7c%3D
    • Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594
    • (2012) J Med Chem , vol.55 , Issue.14 , pp. 6582-6594
    • Mysinger, M.M.1    Carchia, M.2    Irwin, J.J.3    Shoichet, B.K.4
  • 26
    • 84988007780 scopus 로고    scopus 로고
    • OpenEye GraphSim Toolkit. OpenEye Scientific Software, Santa Fe, NM.
    • OpenEye GraphSim Toolkit. OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com
  • 30
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • COI: 1:CAS:528:DC%2BC3cXlt1Onsbg%3D
    • Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754
    • (2010) J Chem Inf Model , vol.50 , Issue.5 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 31
    • 65349136650 scopus 로고    scopus 로고
    • Maximum unbiased validation (MUV) data sets for virtual screening based on pubchem bioactivity data
    • COI: 1:CAS:528:DC%2BD1MXptlOhtQ%3D%3D
    • Rohrer SG, Baumann K (2009) Maximum unbiased validation (MUV) data sets for virtual screening based on pubchem bioactivity data. J Chem Inf Model 49(2):169–184
    • (2009) J Chem Inf Model , vol.49 , Issue.2 , pp. 169-184
    • Rohrer, S.G.1    Baumann, K.2
  • 32
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
    • 84866451908 scopus 로고    scopus 로고
    • Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in science conference
    • Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in science conference, pp 57–61
    • (2010) pp 57–61
    • Seabold, S.1    Perktold, J.2
  • 36
    • 66149108701 scopus 로고    scopus 로고
    • Influence relevance voting: an accurate and interpretable virtual high throughput screening method
    • COI: 1:CAS:528:DC%2BD1MXjvVSqt7w%3D
    • Swamidass JS, Azencott C-A, Lin T-W, Gramajo H, Tsai S-C, Baldi P (2009) Influence relevance voting: an accurate and interpretable virtual high throughput screening method. J Chem Inf Model 49(4):756–766
    • (2009) J Chem Inf Model , vol.49 , Issue.4 , pp. 756-766
    • Swamidass, J.S.1    Azencott, C.-A.2    Lin, T.-W.3    Gramajo, H.4    Tsai, S.-C.5    Baldi, P.6
  • 39
    • 34247272948 scopus 로고    scopus 로고
    • Evaluating virtual screening methods: good and bad metrics metrics for the âĂIJearly recognitionâĂİ problem
    • COI: 1:CAS:528:DC%2BD2sXhsVCgtLY%3D
    • Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics metrics for the âĂIJearly recognitionâĂİ problem. J Chem Inf Model 47(2):488–508
    • (2007) J Chem Inf Model , vol.47 , Issue.2 , pp. 488-508
    • Truchon, J.-F.1    Bayly, C.I.2
  • 42
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
    • (1965) Inf Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.