-
1
-
-
85010814719
-
TensorFlow: large-scale machine learning on heterogeneous systems
-
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software. http://tensorflow.org
-
(2015)
Software
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
-
2
-
-
34547260921
-
Ultrafast shape recognition to search compound databases for similar molecular shapes
-
COI: 1:CAS:528:DC%2BD2sXmsFektLo%3D
-
Ballester PJ, Richards WG (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28(10):1711–1723
-
(2007)
J Comput Chem
, vol.28
, Issue.10
, pp. 1711-1723
-
-
Ballester, P.J.1
Richards, W.G.2
-
4
-
-
33845379303
-
Atom pairs as molecular features in structure-activity studies: definition and applications
-
COI: 1:CAS:528:DyaL2MXitVehu7o%3D
-
Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 25(2):64–73
-
(1985)
J Chem Inf Comput Sci
, vol.25
, Issue.2
, pp. 64-73
-
-
Carhart, R.E.1
Smith, D.H.2
Venkataraghavan, R.3
-
5
-
-
84987949998
-
-
Dahl G (2012) Deep learning how I did it: Merck 1st place interview.
-
Dahl G (2012) Deep learning how I did it: Merck 1st place interview.http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview
-
-
-
-
7
-
-
84988006211
-
Classifying plankton with deep neural networks
-
Dieleman S (2015) Classifying plankton with deep neural networks. 17 Mar 2015. http://benanne.github.io/2015/03/17/plankton.html
-
(2015)
17 Mar 2015
-
-
Dieleman, S.1
-
8
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
9
-
-
84965159799
-
Convolutional networks on graphs for learning molecular fingerprints. In: Advances in neural information processing systems
-
Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Advances in neural information processing systems, pp 2224–2232
-
(2015)
pp 2224–2232
-
-
Duvenaud, D.K.1
Maclaurin, D.2
Iparraguirre, J.3
Bombarell, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
10
-
-
49149147973
-
Iterative partial equalization of orbital electronegativity–a rapid access to atomic charges
-
COI: 1:CAS:528:DyaL3MXhslCjtbs%3D
-
Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity–a rapid access to atomic charges. Tetrahedron 36(22):3219–3228
-
(1980)
Tetrahedron
, vol.36
, Issue.22
, pp. 3219-3228
-
-
Gasteiger, J.1
Marsili, M.2
-
11
-
-
33846212271
-
Comparison of shape-matching and docking as virtual screening tools
-
COI: 1:CAS:528:DC%2BD28Xhtlansb%2FF
-
Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82
-
(2007)
J Med Chem
, vol.50
, Issue.1
, pp. 74-82
-
-
Hawkins, P.C.D.1
Skillman, A.G.2
Nicholls, A.3
-
13
-
-
41349106542
-
Recommendations for evaluation of computational methods
-
COI: 1:CAS:528:DC%2BD1cXjsFOnsb0%3D
-
Jain AN, Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22(3–4):133–139
-
(2008)
J Comput Aided Mol Des
, vol.22
, Issue.3-4
, pp. 133-139
-
-
Jain, A.N.1
Nicholls, A.2
-
14
-
-
84987962764
-
-
Landrum G (2014) RDKit: open-source cheminformatics.
-
Landrum G (2014) RDKit: open-source cheminformatics. http://www.rdkit.org
-
-
-
-
15
-
-
84930630277
-
Deep learning
-
COI: 1:CAS:528:DC%2BC2MXht1WlurzP
-
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
16
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
-
COI: 1:CAS:528:DC%2BC3sXpvVGht7g%3D
-
Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53(7):1563–1575
-
(2013)
J Chem Inf Model
, vol.53
, Issue.7
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
17
-
-
84923367417
-
Deep neural nets as a method for quantitative structure–activity relationships
-
COI: 1:CAS:528:DC%2BC2MXhvFGns70%3D
-
Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model 55(2):263–274
-
(2015)
J Chem Inf Model
, vol.55
, Issue.2
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
18
-
-
84987962735
-
Geodesic convolutional neural networks on riemannian manifolds. In: Proceedings of the IEEE international conference on computer vision workshops
-
Masci J, Boscaini D, Bronstein M, Vandergheynst P (2015) Geodesic convolutional neural networks on riemannian manifolds. In: Proceedings of the IEEE international conference on computer vision workshops, pp 37–45
-
(2015)
pp 37–45
-
-
Masci, J.1
Boscaini, D.2
Bronstein, M.3
Vandergheynst, P.4
-
21
-
-
26944503086
-
Automatic generation of complementary descriptors with molecular graph networks
-
COI: 1:CAS:528:DC%2BD2MXmvFSktb4%3D
-
Merkwirth C, Lengauer T (2005) Automatic generation of complementary descriptors with molecular graph networks. J Chem Inf Model 45(5):1159–1168
-
(2005)
J Chem Inf Model
, vol.45
, Issue.5
, pp. 1159-1168
-
-
Merkwirth, C.1
Lengauer, T.2
-
22
-
-
63049119992
-
Neural network for graphs: a contextual constructive approach
-
Micheli A (2009) Neural network for graphs: a contextual constructive approach. IEEE Trans Neural Netw 20(3):498–511
-
(2009)
IEEE Trans Neural Netw
, vol.20
, Issue.3
, pp. 498-511
-
-
Micheli, A.1
-
23
-
-
33745078578
-
The use of three-dimensional shape and electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor 1 antagonist
-
COI: 1:CAS:528:DC%2BD28XktFSht7g%3D
-
Muchmore SW, Souers AJ, Akritopoulou-Zanze I (2006) The use of three-dimensional shape and electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor 1 antagonist. Chem Biol Drug Des 67(2):174–176
-
(2006)
Chem Biol Drug Des
, vol.67
, Issue.2
, pp. 174-176
-
-
Muchmore, S.W.1
Souers, A.J.2
Akritopoulou-Zanze, I.3
-
24
-
-
84864264343
-
Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking
-
COI: 1:CAS:528:DC%2BC38XovFaku7c%3D
-
Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594
-
(2012)
J Med Chem
, vol.55
, Issue.14
, pp. 6582-6594
-
-
Mysinger, M.M.1
Carchia, M.2
Irwin, J.J.3
Shoichet, B.K.4
-
25
-
-
77952716960
-
Molecular shape and medicinal chemistry: a perspective
-
COI: 1:CAS:528:DC%2BC3cXhvF2kt7k%3D
-
Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW, Brown SP, Grant JA, Haigh JA et al (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53(10):3862–3886
-
(2010)
J Med Chem
, vol.53
, Issue.10
, pp. 3862-3886
-
-
Nicholls, A.1
McGaughey, G.B.2
Sheridan, R.P.3
Good, A.C.4
Warren, G.5
Mathieu, M.6
Muchmore, S.W.7
Brown, S.P.8
Grant, J.A.9
Haigh, J.A.10
-
26
-
-
84988007780
-
-
OpenEye GraphSim Toolkit. OpenEye Scientific Software, Santa Fe, NM.
-
OpenEye GraphSim Toolkit. OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com
-
-
-
-
27
-
-
80555140075
-
Scikit-learn: machine learning in python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
-
28
-
-
84865227014
-
Rethinking molecular similarity: comparing compounds on the basis of biological activity
-
COI: 1:CAS:528:DC%2BC38Xnt1WrtLY%3D
-
Petrone PM, Simms B, Nigsch F, Lounkine E, Kutchukian P, Cornett A, Deng Z, Davies JW, Jenkins JL, Glick M (2012) Rethinking molecular similarity: comparing compounds on the basis of biological activity. ACS Chem Biol 7(8):1399–1409
-
(2012)
ACS Chem Biol
, vol.7
, Issue.8
, pp. 1399-1409
-
-
Petrone, P.M.1
Simms, B.2
Nigsch, F.3
Lounkine, E.4
Kutchukian, P.5
Cornett, A.6
Deng, Z.7
Davies, J.W.8
Jenkins, J.L.9
Glick, M.10
-
29
-
-
84927735077
-
-
Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande V (2015) Massively multitask networks for drug discovery. arXiv:1502.02072
-
(2015)
Massively multitask networks for drug discovery. arXiv
, vol.1502
, pp. 02072
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
30
-
-
77952772341
-
Extended-connectivity fingerprints
-
COI: 1:CAS:528:DC%2BC3cXlt1Onsbg%3D
-
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754
-
(2010)
J Chem Inf Model
, vol.50
, Issue.5
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
31
-
-
65349136650
-
Maximum unbiased validation (MUV) data sets for virtual screening based on pubchem bioactivity data
-
COI: 1:CAS:528:DC%2BD1MXptlOhtQ%3D%3D
-
Rohrer SG, Baumann K (2009) Maximum unbiased validation (MUV) data sets for virtual screening based on pubchem bioactivity data. J Chem Inf Model 49(2):169–184
-
(2009)
J Chem Inf Model
, vol.49
, Issue.2
, pp. 169-184
-
-
Rohrer, S.G.1
Baumann, K.2
-
32
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
33
-
-
58649113008
-
The graph neural network model
-
Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80
-
(2009)
IEEE Trans Neural Netw
, vol.20
, Issue.1
, pp. 61-80
-
-
Scarselli, F.1
Gori, M.2
Tsoi, A.C.3
Hagenbuchner, M.4
Monfardini, G.5
-
34
-
-
84866451908
-
Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in science conference
-
Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in science conference, pp 57–61
-
(2010)
pp 57–61
-
-
Seabold, S.1
Perktold, J.2
-
35
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958
-
(2014)
J Mach Learn Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
36
-
-
66149108701
-
Influence relevance voting: an accurate and interpretable virtual high throughput screening method
-
COI: 1:CAS:528:DC%2BD1MXjvVSqt7w%3D
-
Swamidass JS, Azencott C-A, Lin T-W, Gramajo H, Tsai S-C, Baldi P (2009) Influence relevance voting: an accurate and interpretable virtual high throughput screening method. J Chem Inf Model 49(4):756–766
-
(2009)
J Chem Inf Model
, vol.49
, Issue.4
, pp. 756-766
-
-
Swamidass, J.S.1
Azencott, C.-A.2
Lin, T.-W.3
Gramajo, H.4
Tsai, S.-C.5
Baldi, P.6
-
37
-
-
84937522268
-
Going deeper with convolutions. In: CVPR 2015
-
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: CVPR 2015. arxiv.org/abs/1409.4842
-
(2015)
arxiv.org/abs/1409.4842
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
39
-
-
34247272948
-
Evaluating virtual screening methods: good and bad metrics metrics for the âĂIJearly recognitionâĂİ problem
-
COI: 1:CAS:528:DC%2BD2sXhsVCgtLY%3D
-
Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics metrics for the âĂIJearly recognitionâĂİ problem. J Chem Inf Model 47(2):488–508
-
(2007)
J Chem Inf Model
, vol.47
, Issue.2
, pp. 488-508
-
-
Truchon, J.-F.1
Bayly, C.I.2
-
41
-
-
84861400021
-
PubChem’s BioAssay database
-
Yanli W, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, Han L, Karapetyan K, Dracheva S, Shoemaker BA et al (2012) PubChem’s BioAssay database. Nucl Acids Res 40(D1):D400–D412
-
(2012)
Nucl Acids Res
, vol.40
, Issue.D1
, pp. D400-D412
-
-
Yanli, W.1
Xiao, J.2
Suzek, T.O.3
Zhang, J.4
Wang, J.5
Zhou, Z.6
Han, L.7
Karapetyan, K.8
Dracheva, S.9
Shoemaker, B.A.10
-
42
-
-
34248666540
-
Fuzzy sets
-
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
-
(1965)
Inf Control
, vol.8
, Issue.3
, pp. 338-353
-
-
Zadeh, L.A.1
|