메뉴 건너뛰기




Volumn , Issue , 2016, Pages 667-675

Dynamic filter networks

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE OPTICS; BANDPASS FILTERS; FEATURE EXTRACTION; MEMORY ARCHITECTURE; STEREO IMAGE PROCESSING;

EID: 85018901275     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1250)

References (24)
  • 2
    • 85018936904 scopus 로고    scopus 로고
    • Unsupervised learning for physical interaction through video prediction
    • Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through video prediction. In NIPS, 2016.
    • (2016) NIPS
    • Finn, C.1    Goodfellow, I.2    Levine, S.3
  • 3
    • 84965128653 scopus 로고    scopus 로고
    • Deepstereo: Learning to predict new views from the world's imagery
    • John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. Deepstereo: Learning to predict new views from the world's imagery. In CVPR, 2015.
    • (2015) CVPR
    • Flynn, J.1    Neulander, I.2    Philbin, J.3    Snavely, N.4
  • 4
    • 85036637107 scopus 로고    scopus 로고
    • Evolving modular fast-weight networks for control
    • Faustino J. Gomez and Jürgen Schmidhuber. Evolving modular fast-weight networks for control. In ICANN, 2005.
    • (2005) ICANN
    • Gomez, F.J.1    Schmidhuber, J.2
  • 6
    • 84965139813 scopus 로고    scopus 로고
    • Learning to linearize under uncertainty
    • Ross Goroshin, Michaël Mathieu, and Yann LeCun. Learning to linearize under uncertainty. In NIPS, 2015.
    • (2015) NIPS
    • Goroshin, R.1    Mathieu, M.2    LeCun, Y.3
  • 7
    • 85013813121 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
    • (2015) CoRR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 8
    • 85017428320 scopus 로고    scopus 로고
    • Identity mappings in deep residual networks
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. CoRR, abs/1603.05027, 2016.
    • (2016) CoRR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 10
    • 84959186411 scopus 로고    scopus 로고
    • A dynamic convolutional layer for short range weather prediction
    • Benjamin Klein, Lior Wolf, and Yehuda Afek. A dynamic convolutional layer for short range weather prediction. In CVPR, 2015.
    • (2015) CVPR
    • Klein, B.1    Wolf, L.2    Afek, Y.3
  • 11
    • 84999041243 scopus 로고    scopus 로고
    • Autoencoding beyond pixels using a learned similarity metric
    • Anders B. L. Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding beyond pixels using a learned similarity metric. In ICML, 2016.
    • (2016) ICML
    • Larsen, A.B.L.1    Sønderby, S.K.2    Larochelle, H.3    Winther, O.4
  • 12
    • 85083952137 scopus 로고    scopus 로고
    • Deep multi-scale video prediction beyond mean square error
    • Michaël Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean square error. In ICLR, 2016.
    • (2016) ICLR
    • Mathieu, M.1    Couprie, C.2    LeCun, Y.3
  • 13
    • 84986261711 scopus 로고    scopus 로고
    • Image question answering using convolutional neural network with dynamic parameter prediction
    • Hyeonwoo Noh, Paul Hongsuck Seo, and Bohyung Han. Image question answering using convolutional neural network with dynamic parameter prediction. In CVPR, 2016.
    • (2016) CVPR
    • Noh, H.1    Seo, P.H.2    Han, B.3
  • 14
    • 84965178314 scopus 로고    scopus 로고
    • Action-conditional video prediction using deep networks in atari games
    • Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional video prediction using deep networks in atari games. In NIPS, 2015.
    • (2015) NIPS
    • Oh, J.1    Guo, X.2    Lee, H.3    Lewis, R.L.4    Singh, S.5
  • 15
    • 85019178687 scopus 로고    scopus 로고
    • Spatio-temporal video autoencoder with differen-tiable memory
    • Viorica Patraucean, Ankur Handa, and Roberto Cipolla. Spatio-temporal video autoencoder with differen-tiable memory. CoRR, abs/1511.06309, 2015.
    • (2015) CoRR
    • Patraucean, V.1    Handa, A.2    Cipolla, R.3
  • 16
    • 84962897886 scopus 로고    scopus 로고
    • Video (language) modeling: A baseline for generative models of natural videos
    • Marc'Aurelio Ranzato, Arthur Szlam, Joan Bruna, Michaël Mathieu, R. Collobert, Video (language) modeling: a baseline for generative models of natural videos. CoRR, abs/1412.6604, 2014.
    • (2014) CoRR
    • Ranzato, M.1    Szlam, A.2    Bruna, J.3    Mathieu, M.4    Collobert, R.5
  • 17
    • 84973865994 scopus 로고    scopus 로고
    • Conditioned regression models for non-blind single image super-resolution
    • Gernot Riegler, Samuel Schulter, Matthias Rüther, and Horst Bischof. Conditioned regression models for non-blind single image super-resolution. In ICCV, 2015.
    • (2015) ICCV
    • Riegler, G.1    Schulter, S.2    Rüther, M.3    Bischof, H.4
  • 18
    • 84965121965 scopus 로고    scopus 로고
    • Convolutional LSTM network: A Machine learning approach for precipitation nowcasting
    • Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In NIPS, 2015.
    • (2015) NIPS
    • Shi, X.1    Chen, Z.2    Wang, H.3    Dit, Y.-Y.4    Wai, K.-W.5    Wang, C.-W.6
  • 19
    • 84969544782 scopus 로고    scopus 로고
    • Unsupervised learning of video representations using LSTMs
    • Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video representations using LSTMs. In ICML, 2015.
    • (2015) ICML
    • Srivastava, N.1    Mansimov, E.2    Salakhutdinov, R.3
  • 21
    • 71149118574 scopus 로고    scopus 로고
    • Factored conditional restricted boltzmann Machines for modeling motion style
    • G. Taylor and G. Hinton. Factored conditional restricted boltzmann machines for modeling motion style. In ICML, 2009.
    • (2009) ICML
    • Taylor, G.1    Hinton, G.2
  • 22
    • 85019202072 scopus 로고    scopus 로고
    • Deep3d: Fully automatic 2D-to-3D video conversion with deep convolutional neural networks
    • Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3d: Fully automatic 2D-to-3D video conversion with deep convolutional neural networks. In ECCV, 2016.
    • (2016) ECCV
    • Xie, J.1    Girshick, R.2    Farhadi, A.3
  • 23
    • 84965161391 scopus 로고    scopus 로고
    • Weakly-supervised disentangling with recurrent transformations for 3d view synthesis
    • Jimei Yang, Scott Reed, Ming-Hsuan Yang, and Honglak Lee. Weakly-supervised disentangling with recurrent transformations for 3d view synthesis. In NIPS, 2015.
    • (2015) NIPS
    • Yang, J.1    Reed, S.2    Ming, H.-Y.3    Lee, H.4
  • 24
    • 84959231848 scopus 로고    scopus 로고
    • Rotating your face using multi-task deep neural network
    • Junho Yim, Heechul Jung, ByungIn Yoo, Changkyu Choi, Du-Sik Park, and Junmo Kim. Rotating your face using multi-task deep neural network. In CVPR, 2015.
    • (2015) CVPR
    • Yim, J.1    Jung, H.2    Yoo, B.3    Choi, C.4    Du, S.-P.5    Kim, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.