-
2
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition
-
Carroll, J Douglas and Chang, Jih-Jie. Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition. Psychometrika, 35(3):283–319, 1970.
-
(1970)
Psychometrika
, vol.35
, Issue.3
, pp. 283-319
-
-
Carroll, J.D.1
Chang, J.-J.2
-
4
-
-
84965172096
-
-
arXiv preprint
-
Chen, Wenlin, Wilson, James T, Tyree, Stephen, Weinberger, Kilian Q, and Chen, Yixin. Compressing neural networks with the hashing trick. arXiv preprint arXiv:1504.04788, 2015.
-
(2015)
Compressing Neural Networks with the Hashing Trick
-
-
Chen, W.1
Wilson, J.T.2
Tyree, S.3
Weinberger, K.Q.4
Chen, Y.5
-
5
-
-
84965161214
-
-
arXiv preprint
-
Cheng, Yu, Yu, Felix X, Feris, Rogerio S, Kumar, Sanjiv, Choudhary, Alok, and Chang, Shih-Fu. Fast neural networks with circulant projections. arXiv preprint arXiv:1502.03436, 2015.
-
(2015)
Fast Neural Networks with Circulant Projections
-
-
Cheng, Y.1
Yu, F.X.2
Feris, R.S.3
Kumar, S.4
Choudhary, A.5
Chang, S.-F.6
-
6
-
-
0034144758
-
A multilinear singular value decomposition
-
De Lathauwer, Lieven, De Moor, Bart, and Vandewalle, Joos. A multilinear singular value decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.
-
(2000)
SIAM Journal on Matrix Analysis and Applications
, vol.21
, Issue.4
, pp. 1253-1278
-
-
De Lathauwer, L.1
De Moor, B.2
Vandewalle, J.3
-
7
-
-
55349142218
-
Tensor rank and the ill-posedness of the best low-rank approximation problem
-
De Silva, Vin and Lim, Lek-Heng. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM Journal on Matrix Analysis and Applications, 30(3):1084–1127, 2008.
-
(2008)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, Issue.3
, pp. 1084-1127
-
-
De Silva, V.1
Lim, L.-H.2
-
8
-
-
84898971588
-
Predicting parameters in deep learning
-
Denil, Misha, Shakibi, Babak, Dinh, Laurent, de Freitas, Nando, et al. Predicting parameters in deep learning. In Advances in Neural Information Processing Systems, pp. 2148–2156, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2148-2156
-
-
Denil, M.1
Shakibi, B.2
Dinh, L.3
De Freitas, N.4
-
9
-
-
84937896655
-
Exploiting linear structure within convolutional networks for efficient evaluation
-
Denton, Emily L, Zaremba, Wojciech, Bruna, Joan, LeCun, Yann, and Fergus, Rob. Exploiting linear structure within convolutional networks for efficient evaluation. In Advances in Neural Information Processing Systems, pp. 1269–1277, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 1269-1277
-
-
Denton, E.L.1
Zaremba, W.2
Bruna, J.3
LeCun, Y.4
Fergus, R.5
-
11
-
-
84940682866
-
-
arXiv preprint
-
Gong, Yunchao, Liu, Liu, Yang, Ming, and Bourdev, Lubomir. Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.
-
(2014)
Compressing Deep Convolutional Networks Using Vector Quantization
-
-
Gong, Y.1
Liu, L.2
Yang, M.3
Bourdev, L.4
-
12
-
-
84998652874
-
-
arXiv preprint
-
Han, Song, Mao, Huizi, and Dally, William J. A deep neural network compression pipeline: Pruning, quantization, huffman encoding. arXiv preprint arXiv:1510.00149, 2015a.
-
(2015)
A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding
-
-
Han, S.1
Mao, H.2
Dally, W.J.3
-
13
-
-
84966674121
-
-
arXiv preprint
-
Han, Song, Pool, Jeff, Tran, John, and Dally, William J. Learning both weights and connections for efficient neural networks. arXiv preprint arXiv:1506.02626, 2015b.
-
(2015)
Learning Both Weights and Connections for Efficient Neural Networks
-
-
Han, S.1
Pool, J.2
Tran, J.3
Dally, W.J.4
-
15
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In IEEE International Conference on Computer Vision, 2015.
-
(2015)
IEEE International Conference on Computer Vision
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
84867720412
-
-
arXiv preprint
-
Hinton, Geoffrey E, Srivastava, Nitish, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Rus-lan R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.-L.R.5
-
17
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, 2015.
-
(2015)
International Conference on Machine Learning
-
-
Ioffe, S.1
Szegedy, C.2
-
20
-
-
68649096448
-
Tensor decompositions and applications
-
Kolda, Tamara G and Bader, Brett W. Tensor decompositions and applications. SIAM review, 51(3): 455–500, 2009.
-
(2009)
SIAM Review
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolda, T.G.1
Bader, B.W.2
-
21
-
-
85083952441
-
Speeding-up convolutional neural networks using fine-tuned cp-decomposition
-
Lebedev, Vadim, Ganin, Yaroslav, Rakhuba, Maksim, Oseledets, Ivan, and Lempitsky, Victor. Speeding-up convolutional neural networks using fine-tuned cp-decomposition. In International Conference on Learning Representations, 2015.
-
(2015)
International Conference on Learning Representations
-
-
Lebedev, V.1
Ganin, Y.2
Rakhuba, M.3
Oseledets, I.4
Lempitsky, V.5
-
23
-
-
0001025418
-
Bayesian interpolation
-
MacKay, David JC. Bayesian interpolation. Neural computation, 4(3):415–447, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
25
-
-
70349663945
-
Automatic relevance determination for multi-way models
-
Mørup, Morten and Hansen, Lars Kai. Automatic relevance determination for multi-way models. Journal of Chemometrics, 23(7-8):352–363, 2009.
-
(2009)
Journal of Chemometrics
, vol.23
, Issue.7-8
, pp. 352-363
-
-
Mørup, M.1
Hansen, L.K.2
-
27
-
-
84877756389
-
Perfect dimensionality recovery by variational Bayesian PCA
-
Nakajima, Shinichi, Tomioka, Ryota, Sugiyama, Masashi, and Babacan, S Derin. Perfect dimensionality recovery by variational bayesian pca. In Advances in Neural Information Processing Systems, pp. 971–979, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 971-979
-
-
Nakajima, S.1
Tomioka, R.2
Sugiyama, M.3
Babacan, S.D.4
-
28
-
-
84873435460
-
Global analytic solution of fully-observed variational Bayesian matrix factorization
-
Nakajima, Shinichi, Sugiyama, Masashi, Babacan, S Derin, and Tomioka, Ryota. Global analytic solution of fully-observed variational bayesian matrix factorization. The Journal of Machine Learning Research, 14(1):1–37, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1-37
-
-
Nakajima, S.1
Sugiyama, M.2
Babacan, S.D.3
Tomioka, R.4
-
29
-
-
85018879093
-
-
arXiv preprint
-
Novikov, Alexander, Podoprikhin, Dmitry, Osokin, Anton, and Vetrov, Dmitry. Tensorizing neural networks. arXiv preprint arXiv:1509.06569, 2015.
-
(2015)
Tensorizing Neural Networks
-
-
Novikov, A.1
Podoprikhin, D.2
Osokin, A.3
Vetrov, D.4
-
32
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet, Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich, Andrew. Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
33
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, Michael E. Sparse bayesian learning and the relevance vector machine. The journal of machine learning research, 1:211–244, 2001.
-
(2001)
The Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
34
-
-
0013953617
-
Some mathematical notes on three-mode factor analysis
-
Tucker, Ledyard R. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3): 279–311, 1966.
-
(1966)
Psychometrika
, vol.31
, Issue.3
, pp. 279-311
-
-
Tucker, L.R.1
-
35
-
-
84867754966
-
Improving the speed of neural networks on cpus
-
Vanhoucke, Vincent, Senior, Andrew, and Mao, Mark Z. Improving the speed of neural networks on cpus. In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop, volume 1, 2011.
-
(2011)
Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop
, vol.1
-
-
Vanhoucke, V.1
Senior, A.2
Mao, M.Z.3
-
36
-
-
30044447599
-
Generalized low rank approximations of matrices
-
Ye, Jieping. Generalized low rank approximations of matrices. Machine Learning, 61(1-3):167–191, 2005.
-
(2005)
Machine Learning
, vol.61
, Issue.1-3
, pp. 167-191
-
-
Ye, J.1
-
37
-
-
84966539393
-
-
arXiv preprint
-
Zhang, Xiangyu, Zou, Jianhua, He, Kaiming, and Sun, Jian. Accelerating very deep convolutional networks for classification and detection. arXiv preprint arXiv:1505.06798, 2015a.
-
(2015)
Accelerating Very Deep Convolutional Networks for Classification and Detection
-
-
Zhang, X.1
Zou, J.2
He, K.3
Sun, J.4
-
38
-
-
84965111647
-
-
Zhang, Xiangyu, Zou, Jianhua, Ming, Xiang, He, Kaiming, and Sun, Jian. Efficient and accurate approximations of nonlinear convolutional networks. 2015b.
-
(2015)
Efficient and Accurate Approximations of Nonlinear Convolutional Networks
-
-
Zhang, X.1
Zou, J.2
Ming, X.3
He, K.4
Sun, J.5
|