메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 416-425

Scene flow to action map: A new representation for RGB-D based action recognition with convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; EXTRACTION; NEURAL NETWORKS; VECTOR SPACES;

EID: 85043297155     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.52     Document Type: Conference Paper
Times cited : (145)

References (64)
  • 4
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical recurrent neural network for skeleton based action recognition
    • Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton based action recognition. In CVPR, pages 1110-1118, 2015.
    • (2015) CVPR , pp. 1110-1118
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 8
    • 84911455261 scopus 로고    scopus 로고
    • Sphereflow: 6 DoF scene flow from RGB-D pairs
    • M. Hornacek, A. Fitzgibbon, and C. Rother. Sphereflow: 6 DoF scene flow from RGB-D pairs. In CVPR, pages 3526- 3533, 2014.
    • (2014) CVPR , pp. 3526-3533
    • Hornacek, M.1    Fitzgibbon, A.2    Rother, C.3
  • 10
    • 84959219372 scopus 로고    scopus 로고
    • Jointly learning heterogeneous features for RGB-D activity recognition
    • J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang. Jointly learning heterogeneous features for RGB-D activity recognition. In CVPR, pages 5344-5352, 2015.
    • (2015) CVPR , pp. 5344-5352
    • Hu, J.-F.1    Zheng, W.-S.2    Lai, J.3    Zhang, J.4
  • 11
    • 84938224887 scopus 로고    scopus 로고
    • A primal-dual framework for real-time dense RGB-D scene flow
    • M. Jaimez, M. Souiai, J. Gonzalez-Jimenez, and D. Cremers. A primal-dual framework for real-time dense RGB-D scene flow. In ICRA, pages 98-104, 2015.
    • (2015) ICRA , pp. 98-104
    • Jaimez, M.1    Souiai, M.2    Gonzalez-Jimenez, J.3    Cremers, D.4
  • 13
    • 84985919999 scopus 로고    scopus 로고
    • Low-rank tensor subspace learning for rgb-d action recognition
    • C. Jia and Y. Fu. Low-rank tensor subspace learning for rgb-d action recognition. IEEE Transactions on Image Processing, 25(10):4641-4652, 2016.
    • (2016) IEEE IEEE Transactions on Image Processing , vol.25 , Issue.10 , pp. 4641-4652
    • Jia, C.1    Fu, Y.2
  • 15
    • 8144222580 scopus 로고    scopus 로고
    • Withdrawn: Levenberg-marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints
    • C. Kanzow, N. Yamashita, and M. Fukushima. Withdrawn: Levenberg-marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. Journal of Computational and Applied Mathematics, 173(2):321-343, 2005.
    • (2005) Journal of Computational and Applied Mathematics , vol.173 , Issue.2 , pp. 321-343
    • Kanzow, C.1    Yamashita, N.2    Fukushima, M.3
  • 16
    • 84959208518 scopus 로고    scopus 로고
    • Bilinear heterogeneous information machine for RGB-D action recognition
    • Y. Kong and Y. Fu. Bilinear heterogeneous information machine for RGB-D action recognition. In CVPR, pages 1054- 1062, 2015.
    • (2015) CVPR , pp. 1054-1062
    • Kong, Y.1    Fu, Y.2
  • 18
    • 84959241532 scopus 로고    scopus 로고
    • Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition
    • Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Beyond gaussian pyramid: Multi-skip feature stacking for action recognition. In CVPR, pages 204-212, 2015.
    • (2015) CVPR , pp. 204-212
    • Lan, Z.1    Lin, M.2    Li, X.3    Hauptmann, A.G.4    Raj, B.5
  • 19
    • 85018500124 scopus 로고    scopus 로고
    • Joint distance maps based action recognition with convolutional neural network
    • C. Li, Y. Hou, P.Wang, andW. Li. Joint distance maps based action recognition with convolutional neural network. IEEE Signal Processing Letters, 2017.
    • (2017) IEEE IEEE Signal Processing Letters
    • Li, C.1    Hou, Y.2    Wang, P.3    Li, W.4
  • 20
    • 77956552331 scopus 로고    scopus 로고
    • Action recognition based on a bag of 3D points
    • W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3D points. In CVPRW, pages 9-14, 2010.
    • (2010) CVPRW , pp. 9-14
    • Li, W.1    Zhang, Z.2    Liu, Z.3
  • 23
    • 85041922534 scopus 로고    scopus 로고
    • Global context-aware attention lstm networks for 3d action recognition
    • J. Liu and G. Wang. Global context-aware attention lstm networks for 3d action recognition. In CVPR, 2017.
    • (2017) CVPR
    • Liu, J.1    Wang, G.2
  • 24
    • 84911363420 scopus 로고    scopus 로고
    • Range-sample depth feature for action recognition
    • C. Lu, J. Jia, and C.-K. Tang. Range-sample depth feature for action recognition. In CVPR, pages 772-779, 2014.
    • (2014) CVPR , pp. 772-779
    • Lu, C.1    Jia, J.2    Tang, C.-K.3
  • 26
    • 84959203005 scopus 로고    scopus 로고
    • Object scene flow for autonomous vehicles
    • M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In CVPR, pages 3061-3070, 2015.
    • (2015) CVPR , pp. 3061-3070
    • Menze, M.1    Geiger, A.2
  • 27
    • 84921906046 scopus 로고    scopus 로고
    • Pose adaptive motion feature pooling for human action analysis
    • B. Ni, P. Moulin, and S. Yan. Pose adaptive motion feature pooling for human action analysis. International Journal of Computer Vision, 111(2):229-248, 2015.
    • (2015) International Journal of Computer Vision , vol.111 , Issue.2 , pp. 229-248
    • Ni, B.1    Moulin, P.2    Yan, S.3
  • 28
    • 84951985479 scopus 로고    scopus 로고
    • A generative restricted boltzmann machine based method for high-dimensional motion data modeling
    • S. Nie, Z. Wang, and Q. Ji. A generative restricted boltzmann machine based method for high-dimensional motion data modeling. Computer Vision and Image Understanding, pages 14-22, 2015.
    • (2015) Computer Vision and Image Understanding , pp. 14-22
    • Nie, S.1    Wang, Z.2    Ji, Q.3
  • 29
    • 84887375927 scopus 로고    scopus 로고
    • HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences
    • O. Oreifej and Z. Liu. HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences. In CVPR, pages 716-723, 2013.
    • (2013) CVPR , pp. 716-723
    • Oreifej, O.1    Liu, Z.2
  • 30
    • 85018110317 scopus 로고    scopus 로고
    • Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice
    • X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. Computer Vision and Image Understanding, 2016.
    • (2016) Computer Vision and Image Understanding
    • Peng, X.1    Wang, L.2    Wang, X.3    Qiao, Y.4
  • 31
    • 84906510060 scopus 로고    scopus 로고
    • Action recognition with stacked fisher vectors
    • X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors. In ECCV, pages 581-595, 2014.
    • (2014) ECCV , pp. 581-595
    • Peng, X.1    Zou, C.2    Qiao, Y.3    Peng, Q.4
  • 32
    • 84906346461 scopus 로고    scopus 로고
    • Dense semi-rigid scene flow estimation from RGBD images
    • J. Quiroga, T. Brox, F. Devernay, and J. Crowley. Dense semi-rigid scene flow estimation from RGBD images. In ECCV, pages 567-582. 2014.
    • (2014) ECCV , pp. 567-582
    • Quiroga, J.1    Brox, T.2    Devernay, F.3    Crowley, J.4
  • 33
    • 84958953227 scopus 로고    scopus 로고
    • Learning a non-linear knowledge transfer model for cross-view action recognition
    • H. Rahmani and A. Mian. Learning a non-linear knowledge transfer model for cross-view action recognition. In CVPR, pages 2458-2466, 2015.
    • (2015) CVPR , pp. 2458-2466
    • Rahmani, H.1    Mian, A.2
  • 34
    • 84986252370 scopus 로고    scopus 로고
    • NTU RGB+ D: A large scale dataset for 3D human activity analysis
    • A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU RGB+ D: A large scale dataset for 3D human activity analysis. In CVPR, 2016.
    • (2016) CVPR
    • Shahroudy, A.1    Liu, J.2    Ng, T.-T.3    Wang, G.4
  • 35
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, pages 568-576, 2014.
    • (2014) NIPS , pp. 568-576
    • Simonyan, K.1    Zisserman, A.2
  • 36
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and computing, 14(3):199-222, 2004.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 37
    • 84959188779 scopus 로고    scopus 로고
    • Layered RGBD scene flow estimation
    • D. Sun, E. B. Sudderth, and H. Pfister. Layered RGBD scene flow estimation. In CVPR, pages 548-556, 2015.
    • (2015) CVPR , pp. 548-556
    • Sun, D.1    Sudderth, E.B.2    Pfister, H.3
  • 38
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10, 000 classes
    • Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10, 000 classes. In CVPR, 2014.
    • (2014) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 39
    • 84973865953 scopus 로고    scopus 로고
    • Learning spatiotemporal features with 3D convolutional networks
    • D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3D convolutional networks. In ICCV, pages 4489-4497, 2015.
    • (2015) ICCV , pp. 4489-4497
    • Tran, D.1    Bourdev, L.2    Fergus, R.3    Torresani, L.4    Paluri, M.5
  • 42
    • 84973920651 scopus 로고    scopus 로고
    • Differential recurrent neural networks for action recognition
    • V. Veeriah, N. Zhuang, and G.-J. Qi. Differential recurrent neural networks for action recognition. In ICCV, pages 4041-4049, 2015.
    • (2015) ICCV , pp. 4041-4049
    • Veeriah, V.1    Zhuang, N.2    Qi, G.-J.3
  • 43
    • 84911376484 scopus 로고    scopus 로고
    • Human action recognition by representing 3D skeletons as points in a lie group
    • R. Vemulapalli, F. Arrate, and R. Chellappa. Human action recognition by representing 3D skeletons as points in a lie group. In CVPR, pages 588-595, 2014.
    • (2014) CVPR , pp. 588-595
    • Vemulapalli, R.1    Arrate, F.2    Chellappa, R.3
  • 44
    • 84898799010 scopus 로고    scopus 로고
    • Piecewise rigid scene flow
    • C. Vogel, K. Schindler, and S. Roth. Piecewise rigid scene flow. In ICCV, pages 1377-1384, 2013.
    • (2013) ICCV , pp. 1377-1384
    • Vogel, C.1    Schindler, K.2    Roth, S.3
  • 45
    • 84978426908 scopus 로고    scopus 로고
    • Explore efficient local features from RGB-D data for one-shot learning gesture recognition
    • Aug
    • J. Wan, G. Guo, and S. Z. Li. Explore efficient local features from RGB-D data for one-shot learning gesture recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(8):1626-1639, Aug 2016.
    • (2016) IEEE IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.38 , Issue.8 , pp. 1626-1639
    • Wan, J.1    Guo, G.2    Li, S.Z.3
  • 47
    • 84898634879 scopus 로고    scopus 로고
    • 3d smosift: Three-dimensional sparse motion scale invariant feature transform for activity recognition from rgb-d videos
    • J. Wan, Q. Ruan, W. Li, G. An, and R. Zhao. 3d smosift: three-dimensional sparse motion scale invariant feature transform for activity recognition from rgb-d videos. Journal of Electronic Imaging, 23(2), 2014.
    • (2014) Journal of Electronic Imaging , vol.23 , Issue.2
    • Wan, J.1    Ruan, Q.2    Li, W.3    An, G.4    Zhao, R.5
  • 48
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, pages 3551-3558, 2013.
    • (2013) ICCV , pp. 3551-3558
    • Wang, H.1    Schmid, C.2
  • 49
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for action recognition with depth cameras. In CVPR, pages 1290-1297, 2012.
    • (2012) CVPR , pp. 1290-1297
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 50
    • 84955282488 scopus 로고    scopus 로고
    • Action recognition with trajectory-pooled deep-convolutional descriptors
    • L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-convolutional descriptors. In CVPR, pages 4305-4314, 2015.
    • (2015) CVPR , pp. 4305-4314
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 51
    • 84962878607 scopus 로고    scopus 로고
    • Convnets-based action recognition from depth maps through virtual cameras and pseudocoloring
    • P. Wang, W. Li, Z. Gao, C. Tang, J. Zhang, and P. O. Ogunbona. Convnets-based action recognition from depth maps through virtual cameras and pseudocoloring. In ACM MM, pages 1119-1122, 2015.
    • (2015) IEEE ACM MM , pp. 1119-1122
    • Wang, P.1    Li, W.2    Gao, Z.3    Tang, C.4    Zhang, J.5    Ogunbona, P.O.6
  • 54
  • 55
    • 84922566687 scopus 로고    scopus 로고
    • Mining mid-level features for action recognition based on effective skeleton representation
    • P.Wang, W. Li, P. Ogunbona, Z. Gao, and H. Zhang. Mining mid-level features for action recognition based on effective skeleton representation. In DICTA, 2014.
    • (2014) DICTA
    • Wang, P.1    Li, W.2    Ogunbona, P.3    Gao, Z.4    Zhang, H.5
  • 56
    • 84994571080 scopus 로고    scopus 로고
    • Action recognition based on joint trajectory maps using convolutional neural networks
    • P. Wang, Z. Li, Y. Hou, and W. Li. Action recognition based on joint trajectory maps using convolutional neural networks. In ACM MM, pages 102-106, 2016.
    • (2016) IEEE ACM MM , pp. 102-106
    • Wang, P.1    Li, Z.2    Hou, Y.3    Li, W.4
  • 58
    • 84959198612 scopus 로고    scopus 로고
    • Watch-npatch: Unsupervised understanding of actions and relations
    • C. Wu, J. Zhang, S. Savarese, and A. Saxena. Watch-npatch: Unsupervised understanding of actions and relations. In CVPR, pages 4362-4370, 2015.
    • (2015) CVPR , pp. 4362-4370
    • Wu, C.1    Zhang, J.2    Savarese, S.3    Saxena, A.4
  • 59
    • 84911437630 scopus 로고    scopus 로고
    • Super normal vector for activity recognition using depth sequences
    • X. Yang and Y. Tian. Super normal vector for activity recognition using depth sequences. In CVPR, pages 804-811, 2014.
    • (2014) CVPR , pp. 804-811
    • Yang, X.1    Tian, Y.2
  • 60
    • 84871394796 scopus 로고    scopus 로고
    • Recognizing actions using depth motion maps-based histograms of oriented gradients
    • X. Yang, C. Zhang, and Y. Tian. Recognizing actions using depth motion maps-based histograms of oriented gradients. In ACM MM, pages 1057-1060, 2012.
    • (2012) IEEE ACM MM , pp. 1057-1060
    • Yang, X.1    Zhang, C.2    Tian, Y.3
  • 64
    • 0035691541 scopus 로고    scopus 로고
    • On 3d scene flow and structure estimation
    • Y. Zhang and C. Kambhamettu. On 3d scene flow and structure estimation. In CVPR, pages 778-785, 2001.
    • (2001) CVPR , pp. 778-785
    • Zhang, Y.1    Kambhamettu, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.