메뉴 건너뛰기




Volumn 136, Issue , 2015, Pages 14-22

A generative restricted Boltzmann machine based method for high-dimensional motion data modeling

Author keywords

Facial expression recognition; Generative model; High dimensional motion data; Human action recognition; Restricted Boltzmann machine

Indexed keywords

COMPUTER VISION; GESTURE RECOGNITION; LEARNING SYSTEMS; MOTION ESTIMATION;

EID: 84951985479     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2014.12.005     Document Type: Article
Times cited : (47)

References (36)
  • 2
    • 77956509035 scopus 로고    scopus 로고
    • The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression
    • IEEE
    • P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression CVPR Workshops 2010 IEEE 94 101
    • (2010) CVPR Workshops , pp. 94-101
    • Lucey, P.1    Cohn, J.F.2    Kanade, T.3    Saragih, J.4    Ambadar, Z.5    Matthews, I.6
  • 3
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • I. Laptev On space-time interest points Int. J. Comput. Vis. 64 2-3 2005 107 123
    • (2005) Int. J. Comput. Vis. , vol.64 , Issue.2-3 , pp. 107-123
    • Laptev, I.1
  • 4
    • 51949083365 scopus 로고    scopus 로고
    • I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, Learning realistic human actions from movies, in: CVPR, 2008, pp. 1-8.
    • I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, Learning realistic human actions from movies, in: CVPR, 2008, pp. 1-8.
  • 5
    • 33745834282 scopus 로고    scopus 로고
    • Recognition and segmentation of 3-d human action using hmm and multi-class adaboost
    • F. Lv, and R. Nevatia Recognition and segmentation of 3-d human action using hmm and multi-class adaboost ECCV 2006 359 372
    • (2006) ECCV , pp. 359-372
    • Lv, F.1    Nevatia, R.2
  • 6
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • IEEE
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan Mining actionlet ensemble for action recognition with depth cameras CVPR 2012 IEEE 1290 1297
    • (2012) CVPR , pp. 1290-1297
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 8
  • 9
    • 84866707640 scopus 로고    scopus 로고
    • The shape Boltzmann machine: A strong model of object shape
    • IEEE
    • S.A. Eslami, N. Heess, and J. Winn The shape Boltzmann machine: a strong model of object shape CVPR 2012 IEEE 406 413
    • (2012) CVPR , pp. 406-413
    • Eslami, S.A.1    Heess, N.2    Winn, J.3
  • 10
    • 85162362828 scopus 로고    scopus 로고
    • Anatomically constrained decoding of finger flexion from electrocorticographic signals
    • Z. Wang, G. Schalk, Q. Ji, Anatomically constrained decoding of finger flexion from electrocorticographic signals, in: NIPS, 2011.
    • (2011) NIPS
    • Wang, Z.1    Schalk, G.2    Ji, Q.3
  • 11
    • 85046053896 scopus 로고    scopus 로고
    • Modeling image patches with a directed hierarchy of Markov random fields
    • S. Osindero, G.E. Hinton, Modeling image patches with a directed hierarchy of Markov random fields, in: NIPS, 2007, pp. 1121-1128.
    • (2007) NIPS , pp. 1121-1128
    • Osindero, S.1    Hinton, G.E.2
  • 12
    • 84864999742 scopus 로고    scopus 로고
    • G3d: A gaming action dataset and real time action recognition evaluation framework
    • IEEE
    • V. Bloom, D. Makris, and V. Argyriou G3d: a gaming action dataset and real time action recognition evaluation framework CVPR Workshops 2012 IEEE 7 12
    • (2012) CVPR Workshops , pp. 7-12
    • Bloom, V.1    Makris, D.2    Argyriou, V.3
  • 15
    • 0012048022 scopus 로고    scopus 로고
    • View-based interpretation of real-time optical flow for gesture recognition
    • IEEE
    • R. Cutler, and M. Turk View-based interpretation of real-time optical flow for gesture recognition Automatic Face and Gesture Recognition 1998 IEEE 416 421
    • (1998) Automatic Face and Gesture Recognition , pp. 416-421
    • Cutler, R.1    Turk, M.2
  • 16
    • 77549086087 scopus 로고    scopus 로고
    • A driver fatigue recognition model based on information fusion and dynamic Bayesian network
    • G. Yang, Y. Lin, and P. Bhattacharya A driver fatigue recognition model based on information fusion and dynamic bayesian network Inf. Sci. 180 10 2010 1942 1954
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 1942-1954
    • Yang, G.1    Lin, Y.2    Bhattacharya, P.3
  • 17
    • 84866717619 scopus 로고    scopus 로고
    • A combined pose, object, and feature model for action understanding
    • IEEE
    • B. Packer, K. Saenko, and D. Koller A combined pose, object, and feature model for action understanding CVPR 2012 IEEE 1378 1385
    • (2012) CVPR , pp. 1378-1385
    • Packer, B.1    Saenko, K.2    Koller, D.3
  • 18
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton, and R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 5786 2006 504 507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 19
    • 78149306047 scopus 로고    scopus 로고
    • 3-d object recognition with deep belief nets
    • V. Nair, and G. Hinton 3-d object recognition with deep belief nets NIPS 22 2009 1339 1347
    • (2009) NIPS , vol.22 , pp. 1339-1347
    • Nair, V.1    Hinton, G.2
  • 20
    • 84887383616 scopus 로고    scopus 로고
    • Facial feature tracking under varying facial expressions and face poses based on restricted Boltzmann machine
    • IEEE
    • Y. Wu, Z. Wang, and Q. Ji Facial feature tracking under varying facial expressions and face poses based on restricted Boltzmann machine CVPR 2013 IEEE
    • (2013) CVPR
    • Wu, Y.1    Wang, Z.2    Ji, Q.3
  • 21
    • 84864026688 scopus 로고    scopus 로고
    • Modeling human motion using binary latent variables
    • G. Taylor, G. Hinton, and S. Roweis Modeling human motion using binary latent variables NIPS 19 2007 1345
    • (2007) NIPS , vol.19 , pp. 1345
    • Taylor, G.1    Hinton, G.2    Roweis, S.3
  • 24
    • 34547997421 scopus 로고    scopus 로고
    • Learning multilevel distributed representations for high-dimensional sequences
    • I. Sutskever, G.E. Hinton, Learning multilevel distributed representations for high-dimensional sequences, in: Artificial Intelligence and Statistics, 2007, pp. 544-551.
    • (2007) Artificial Intelligence and Statistics , pp. 544-551
    • Sutskever, I.1    Hinton, G.E.2
  • 25
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted Boltzmann machines
    • ACM
    • H. Larochelle, and Y. Bengio Classification using discriminative restricted Boltzmann machines ICML 2008 ACM 536 543
    • (2008) ICML , pp. 536-543
    • Larochelle, H.1    Bengio, Y.2
  • 26
    • 80053137516 scopus 로고    scopus 로고
    • Classification of Sets Using Restricted Boltzmann Machines
    • IEEE
    • J. Louradour, and H. Larochelle Classification of Sets Using Restricted Boltzmann Machines UAI 2011 IEEE
    • (2011) UAI
    • Louradour, J.1    Larochelle, H.2
  • 27
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. Hinton Training products of experts by minimizing contrastive divergence Neural Comput. 14 8 2002 1771 1800
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.1
  • 28
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • G. Hinton A practical guide to training restricted Boltzmann machines Momentum 9 2010 1
    • (2010) Momentum , vol.9 , pp. 1
    • Hinton, G.1
  • 30
    • 78149327745 scopus 로고    scopus 로고
    • Generative versus discriminative training of RBMs for classification of fMRI images
    • T. Schmah, G.E. Hinton, S.L. Small, S. Strother, R.S. Zemel, Generative versus discriminative training of RBMs for classification of fMRI images, in: NIPS, 2008, pp. 1409-1416.
    • (2008) NIPS , pp. 1409-1416
    • Schmah, T.1    Hinton, G.E.2    Small, S.L.3    Strother, S.4    Zemel, R.S.5
  • 32
    • 84887348989 scopus 로고    scopus 로고
    • Capturing complex spatiooral relations among facial muscles for facial expression recognition
    • Z. Wang, S. Wang, Q. Ji, Capturing complex spatiooral relations among facial muscles for facial expression recognition, in: CVPR, 2013.
    • CVPR , pp. 2013
    • Wang, Z.1    Wang, S.2    Ji, Q.3
  • 34
    • 84862159422 scopus 로고    scopus 로고
    • Learning spatiotemporal features by using independent component analysis with application to facial expression recognition
    • F. Long, T. Wu, J.R. Movellan, M.S. Bartlett, and G. Littlewort Learning spatiotemporal features by using independent component analysis with application to facial expression recognition Neurocomputing 93 2012 126 132
    • (2012) Neurocomputing , vol.93 , pp. 126-132
    • Long, F.1    Wu, T.2    Movellan, J.R.3    Bartlett, M.S.4    Littlewort, G.5
  • 35
    • 56049094605 scopus 로고    scopus 로고
    • Boosting encoded dynamic features for facial expression recognition
    • P. Yang, Q. Liu, and D.N. Metaxas Boosting encoded dynamic features for facial expression recognition Pattern Recogn. Lett. 30 2 2009 132 139
    • (2009) Pattern Recogn. Lett. , vol.30 , Issue.2 , pp. 132-139
    • Yang, P.1    Liu, Q.2    Metaxas, D.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.