메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 5344-5352

Jointly learning heterogeneous features for RGB-D activity recognition

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER VISION; INFERENCE ENGINES; ITERATIVE METHODS; OPTIMIZATION;

EID: 84959219372     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299172     Document Type: Conference Paper
Times cited : (484)

References (41)
  • 1
    • 77953177813 scopus 로고    scopus 로고
    • Uncovering shared structures in multiclass classification
    • Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multiclass classification. In ICML, 2007.
    • (2007) ICML
    • Amit, Y.1    Fink, M.2    Srebro, N.3    Ullman, S.4
  • 2
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JML-R, (6):1817-1853, 2005.
    • (2005) JML-R , Issue.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 3
    • 77953184874 scopus 로고    scopus 로고
    • Heterogeneous feature machines for visual recognition
    • L. Cao, J. Luo, F. Liang, and T. S. Huang. Heterogeneous feature machines for visual recognition. In ICCV 2009.
    • (2009) ICCV
    • Cao, L.1    Luo, J.2    Liang, F.3    Huang, T.S.4
  • 4
    • 84897499352 scopus 로고    scopus 로고
    • Fusion of skeletal and silhouette-based features for human action recognition with rgb-d devices
    • A. A. Chaaraoui, J. R. Padilla-López, and F. Flórez-Revuelta. Fusion of skeletal and silhouette-based features for human action recognition with rgb-d devices. In ICCVW, 2013.
    • (2013) ICCVW
    • Chaaraoui, A.A.1    Padilla-López, J.R.2    Flórez-Revuelta, F.3
  • 5
    • 84875472724 scopus 로고    scopus 로고
    • A convex formulation for learning a shared predictive structure from multiple tasks
    • J. Chen, L. Tang, J. Liu, and J. Ye. A convex formulation for learning a shared predictive structure from multiple tasks. TPAMI, 35(5):1025-1038, 2013.
    • (2013) TPAMI , vol.35 , Issue.5 , pp. 1025-1038
    • Chen, J.1    Tang, L.2    Liu, J.3    Ye, J.4
  • 7
    • 84867118631 scopus 로고    scopus 로고
    • Cross-domain multitask learning with latent probit models
    • S. Han, X. Liao, and L. Carin. Cross-domain multitask learning with latent probit models. In ICML, 2012.
    • (2012) ICML
    • Han, S.1    Liao, X.2    Carin, L.3
  • 8
    • 85026927813 scopus 로고    scopus 로고
    • Exemplarbased recognition of human-object interactions
    • J. Hu, W. Zheng, J. Lai, S. Gong, and T. Xiang. Exemplarbased recognition of human-object interactions. TCSVT, PP(99):1-1, 2015.
    • (2015) TCSVT , vol.PP , Issue.99 , pp. 1
    • Hu, J.1    Zheng, W.2    Lai, J.3    Gong, S.4    Xiang, T.5
  • 9
    • 84896061825 scopus 로고    scopus 로고
    • Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations
    • M. Hussein, M. Torki, M. Gowayyed, and M. El-Saban. Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations. In IJCAI, 2013.
    • (2013) IJCAI
    • Hussein, M.1    Torki, M.2    Gowayyed, M.3    El-Saban, M.4
  • 10
    • 84880311243 scopus 로고    scopus 로고
    • Learning human activities and object affordances from rgb-d videos
    • H. S. Koppula, R. Gupta, and A. Saxena. Learning human activities and object affordances from rgb-d videos. IJRR, 32(8):951-970, 2013.
    • (2013) IJRR , vol.32 , Issue.8 , pp. 951-970
    • Koppula, H.S.1    Gupta, R.2    Saxena, A.3
  • 11
    • 84867458382 scopus 로고    scopus 로고
    • Fine-grained kitchen activity recognition using rgb-d
    • J. Lei, X. Ren, and D. Fox. Fine-grained kitchen activity recognition using rgb-d. In Ubicomp, 2012.
    • (2012) Ubicomp
    • Lei, J.1    Ren, X.2    Fox, D.3
  • 12
    • 84901836467 scopus 로고    scopus 로고
    • Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation
    • W. Li, L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. TPAMI, 36(6):1134-1148, 2014.
    • (2014) TPAMI , vol.36 , Issue.6 , pp. 1134-1148
    • Li, W.1    Duan, L.2    Xu, D.3    Tsang, I.W.4
  • 13
    • 77956552331 scopus 로고    scopus 로고
    • Action recognition based on a bag of 3d points
    • W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d points. In CVPRW, 2010.
    • (2010) CVPRW
    • Li, W.1    Zhang, Z.2    Liu, Z.3
  • 14
    • 84911386198 scopus 로고    scopus 로고
    • Discriminative hierarchical modeling of spatio-temporally composable human activities
    • I. Lillo, A. Soto, and J. C. Niebles. Discriminative hierarchical modeling of spatio-temporally composable human activities. In CVPR, 2014.
    • (2014) CVPR
    • Lillo, I.1    Soto, A.2    Niebles, J.C.3
  • 15
    • 84896062906 scopus 로고    scopus 로고
    • Learning discriminative representations from rgb-d video data
    • L. Liu and L. Shao. Learning discriminative representations from rgb-d video data. In IJCAI, 2013.
    • (2013) IJCAI
    • Liu, L.1    Shao, L.2
  • 16
    • 84911363420 scopus 로고    scopus 로고
    • Range-sample depth feature for action recognition
    • C. Lu, J. Jia, and C.-K. Tang. Range-sample depth feature for action recognition. In CVPR, 2014.
    • (2014) CVPR
    • Lu, C.1    Jia, J.2    Tang, C.-K.3
  • 17
    • 84898787235 scopus 로고    scopus 로고
    • Group sparsity and geometry constrained dictionary learning for action recognition from depth maps
    • J. Luo, W. Wang, and H. Qi. Group sparsity and geometry constrained dictionary learning for action recognition from depth maps. In ICCV, 2013.
    • (2013) ICCV
    • Luo, J.1    Wang, W.2    Qi, H.3
  • 18
    • 33845867375 scopus 로고    scopus 로고
    • Recognition and segmentation of 3-d human action using hmm and multi-class adaboost
    • F. Lv and R. Nevatia. Recognition and segmentation of 3-d human action using hmm and multi-class adaboost. In EC-CV. 2006.
    • (2006) EC-CV.
    • Lv, F.1    Nevatia, R.2
  • 19
    • 84981301217 scopus 로고    scopus 로고
    • Motion templates for automatic classification and retrieval of motion capture data
    • M. Müller and T. Röder. Motion templates for automatic classification and retrieval of motion capture data. In SCA, pages 137-146, 2006.
    • (2006) SCA , pp. 137-146
    • Müller, M.1    Röder, T.2
  • 20
    • 84922607007 scopus 로고    scopus 로고
    • Order-preserving sparse coding for sequence classification
    • B. Ni, P. Moulin, and S. Yan. Order-preserving sparse coding for sequence classification. In ECCV. 2012.
    • (2012) ECCV
    • Ni, B.1    Moulin, P.2    Yan, S.3
  • 21
    • 84891625198 scopus 로고    scopus 로고
    • Sequence of the most informative joints (smij): A new representation for human skeletal action recognition
    • F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. Sequence of the most informative joints (smij): A new representation for human skeletal action recognition. JVCIR, 25(1):24-38, 2014.
    • (2014) JVCIR , vol.25 , Issue.1 , pp. 24-38
    • Ofli, F.1    Chaudhry, R.2    Kurillo, G.3    Vidal, R.4    Bajcsy, R.5
  • 22
    • 84887375927 scopus 로고    scopus 로고
    • Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences
    • O. Oreifej and Z. Liu. Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. In CVPR, 2013.
    • (2013) CVPR
    • Oreifej, O.1    Liu, Z.2
  • 23
    • 84906737910 scopus 로고    scopus 로고
    • Multi-modal feature fusion for action recognition in rgb-d sequences
    • May
    • A. Shahroudy, G. Wang, and T.-T. Ng. Multi-modal feature fusion for action recognition in rgb-d sequences. In ISCCSP, pages 1-4, May 2014.
    • (2014) ISCCSP , pp. 1-4
    • Shahroudy, A.1    Wang, G.2    Ng, T.-T.3
  • 25
    • 84859955030 scopus 로고    scopus 로고
    • Human activity detection from rgbd images
    • J. Sung, C. Ponce, B. Selman, and A. Saxena. Human activity detection from rgbd images. PAIR, 64, 2011.
    • (2011) PAIR , vol.64
    • Sung, J.1    Ponce, C.2    Selman, B.3    Saxena, A.4
  • 26
    • 34047200109 scopus 로고    scopus 로고
    • Sharing visual features for multiclass and multiview object detection
    • A. Torralba, K. Murphy, andW. Freeman. Sharing visual features for multiclass and multiview object detection. TPAMI, 29(5):854-869, 2007.
    • (2007) TPAMI , vol.29 , Issue.5 , pp. 854-869
    • Torralba, A.1    Murphy, K.2    Freeman, W.3
  • 27
    • 84977672427 scopus 로고    scopus 로고
    • Human action recognition by representing 3d skeletons as points in a lie group
    • R. Vemulapalli, F. Arrate, and R. Chellappa. Human action recognition by representing 3d skeletons as points in a lie group. In CVPR, 2013.
    • (2013) CVPR
    • Vemulapalli, R.1    Arrate, F.2    Chellappa, R.3
  • 28
    • 84871393884 scopus 로고    scopus 로고
    • Robust 3d action recognition with random occupancy patterns
    • J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu. Robust 3d action recognition with random occupancy patterns. In ECCV. 2012.
    • (2012) ECCV
    • Wang, J.1    Liu, Z.2    Chorowski, J.3    Chen, Z.4    Wu, Y.5
  • 29
    • 84900557701 scopus 로고    scopus 로고
    • Learning actionlet ensemble for 3d human action recognition
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan. Learning actionlet ensemble for 3d human action recognition. TPAMI, 36(5):914-927, 2014.
    • (2014) TPAMI , vol.36 , Issue.5 , pp. 914-927
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 30
    • 84898777476 scopus 로고    scopus 로고
    • Modeling 4d human-object interactions for event and object recognition
    • P. Wei, Y. Zhao, N. Zheng, and S.-C. Zhu. Modeling 4d human-object interactions for event and object recognition. In ICCV, 2013.
    • (2013) ICCV
    • Wei, P.1    Zhao, Y.2    Zheng, N.3    Zhu, S.-C.4
  • 31
    • 84879905842 scopus 로고    scopus 로고
    • A feasible method for optimization with orthogonality constraints
    • Z.Wen andW. Yin. A feasible method for optimization with orthogonality constraints. MP, 142(1-2):397-434, 2013.
    • (2013) MP , vol.142 , Issue.1-2 , pp. 397-434
    • Wen andW. Yin, Z.1
  • 32
    • 84887324355 scopus 로고    scopus 로고
    • Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera
    • L. Xia and J. Aggarwal. Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera. In CVPR, 2013.
    • (2013) CVPR
    • Xia, L.1    Aggarwal, J.2
  • 33
    • 84865033379 scopus 로고    scopus 로고
    • View invariant human action recognition using histograms of 3d joints
    • L. Xia, C.-C. Chen, and J. Aggarwal. View invariant human action recognition using histograms of 3d joints. In CVPRW, 2012.
    • (2012) CVPRW
    • Xia, L.1    Chen, C.-C.2    Aggarwal, J.3
  • 34
    • 84863338429 scopus 로고    scopus 로고
    • Heterogeneous multitask learning with joint sparsity constraints
    • X. Yang, S. Kim, and E. P. Xing. Heterogeneous multitask learning with joint sparsity constraints. In NIPS, 2009.
    • (2009) NIPS
    • Yang, X.1    Kim, S.2    Xing, E.P.3
  • 35
    • 84864968280 scopus 로고    scopus 로고
    • Eigenjoints-based action recognition using naive-bayes-nearest-neighbor
    • X. Yang and Y. Tian. Eigenjoints-based action recognition using naive-bayes-nearest-neighbor. In CVPRW, 2012.
    • (2012) CVPRW
    • Yang, X.1    Tian, Y.2
  • 36
    • 84911437630 scopus 로고    scopus 로고
    • Super normal vector for activity recognition using depth sequences
    • X. Yang and Y. Tian. Super normal vector for activity recognition using depth sequences. In CVPR, 2014.
    • (2014) CVPR
    • Yang, X.1    Tian, Y.2
  • 37
    • 84880877295 scopus 로고    scopus 로고
    • Action recognition with exemplar based 2.5d graph matching
    • B. Yao and L. Fei-Fei. Action recognition with exemplar based 2.5d graph matching. In ECCV, 2012.
    • (2012) ECCV
    • Yao, B.1    Fei-Fei, L.2
  • 38
    • 80053162594 scopus 로고    scopus 로고
    • A convex formulation for learning task relationships in multi-task learning
    • Y. Zhang and D. Yeung. A convex formulation for learning task relationships in multi-task learning. In UAI, 2010.
    • (2010) UAI
    • Zhang, Y.1    Yeung, D.2
  • 39
    • 84919886748 scopus 로고    scopus 로고
    • Multi-task learning in heterogeneous feature spaces
    • Y. Zhang and D. Yeung. Multi-task learning in heterogeneous feature spaces. In AAAI, 2011.
    • (2011) AAAI
    • Zhang, Y.1    Yeung, D.2
  • 40
    • 84884960526 scopus 로고    scopus 로고
    • Fusing spatiotemporal features and joints for 3d action recognition
    • Y. Zhu, W. Chen, and G. Guo. Fusing spatiotemporal features and joints for 3d action recognition. In CVPRW, 2013.
    • (2013) CVPRW
    • Zhu, Y.1    Chen, W.2    Guo, G.3
  • 41
    • 84901267217 scopus 로고    scopus 로고
    • Evaluating spatiotemporal interest point features for depth-based action recognition
    • Y. Zhu, W. Chen, and G. Guo. Evaluating spatiotemporal interest point features for depth-based action recognition. IVC, 2014.
    • (2014) IVC
    • Zhu, Y.1    Chen, W.2    Guo, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.