메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1010-1019

NTU RGB+D: A large scale dataset for 3D human activity analysis

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; GESTURE RECOGNITION; INFORMATION ANALYSIS; LEARNING SYSTEMS; MOTION ESTIMATION; RECURRENT NEURAL NETWORKS;

EID: 84986252370     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.115     Document Type: Conference Paper
Times cited : (2985)

References (49)
  • 1
    • 84906782091 scopus 로고    scopus 로고
    • Human activity recognition from 3d data: A review
    • J. Aggarwal and L. Xia. Human activity recognition from 3d data: A review. PR Letters, 2014.
    • (2014) PR Letters
    • Aggarwal, J.1    Xia, L.2
  • 2
    • 84959245343 scopus 로고    scopus 로고
    • Scene labeling with lstm recurrent neural networks
    • W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene labeling with lstm recurrent neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Byeon, W.1    Breuel, T.M.2    Raue, F.3    Liwicki, M.4
  • 4
    • 84956626439 scopus 로고    scopus 로고
    • Utd-mhad: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor
    • Sept
    • C. Chen, R. Jafari, and N. Kehtarnavaz. Utd-mhad: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. In ICIP, Sept 2015.
    • (2015) ICIP
    • Chen, C.1    Jafari, R.2    Kehtarnavaz, N.3
  • 5
    • 84885063479 scopus 로고    scopus 로고
    • A survey of human motion analysis using depth imagery
    • L. Chen, H. Wei, and J. Ferryman. A survey of human motion analysis using depth imagery. PR Letters, 2013.
    • (2013) PR Letters
    • Chen, L.1    Wei, H.2    Ferryman, J.3
  • 6
    • 84887369971 scopus 로고    scopus 로고
    • Human daily action analysis with multi-view and color-depth data
    • Z. Cheng, L. Qin, Y. Ye, Q. Huang, and Q. Tian. Human daily action analysis with multi-view and color-depth data. In ECCV Workshops. 2012.
    • (2012) ECCV Workshops.
    • Cheng, Z.1    Qin, L.2    Ye, Y.3    Huang, Q.4    Tian, Q.5
  • 9
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical recurrent neural network for skeleton based action recognition
    • Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton based action recognition. In CVPR, 2015.
    • (2015) CVPR
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 10
    • 84919934807 scopus 로고    scopus 로고
    • Skeletal quads: Human action recognition using joint quadruples
    • G. Evangelidis, G. Singh, and R. Horaud. Skeletal quads: Human action recognition using joint quadruples. In ICPR, 2014.
    • (2014) ICPR
    • Evangelidis, G.1    Singh, G.2    Horaud, R.3
  • 15
    • 84959219372 scopus 로고    scopus 로고
    • Jointly learning heterogeneous features for rgb-d activity recognition
    • J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang. Jointly learning heterogeneous features for rgb-d activity recognition. In CVPR, 2015.
    • (2015) CVPR
    • Hu, J.-F.1    Zheng, W.-S.2    Lai, J.3    Zhang, J.4
  • 16
    • 84959876313 scopus 로고    scopus 로고
    • Visualizing and understanding recurrent networks
    • A. Karpathy, J. Johnson, and F. Li. Visualizing and understanding recurrent networks. ArXiv, 2015.
    • (2015) ArXiv
    • Karpathy, A.1    Johnson, J.2    Li, F.3
  • 17
    • 84959208518 scopus 로고    scopus 로고
    • Bilinear heterogeneous information machine for rgb-d action recognition
    • Y. Kong and Y. Fu. Bilinear heterogeneous information machine for rgb-d action recognition. In CVPR, 2015.
    • (2015) CVPR
    • Kong, Y.1    Fu, Y.2
  • 18
    • 84880311243 scopus 로고    scopus 로고
    • Learning human activities and object affordances from rgb-d videos
    • H. S. Koppula, R. Gupta, and A. Saxena. Learning human activities and object affordances from rgb-d videos. IJRR, 2013.
    • (2013) IJRR
    • Koppula, H.S.1    Gupta, R.2    Saxena, A.3
  • 19
    • 77956552331 scopus 로고    scopus 로고
    • Action recognition based on a bag of 3d points
    • W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d points. In CVPR Workshops, 2010.
    • (2010) CVPR Workshops
    • Li, W.1    Zhang, Z.2    Liu, Z.3
  • 20
    • 84911363420 scopus 로고    scopus 로고
    • Range-sample depth feature for action recognition
    • C. Lu, J. Jia, and C.-K. Tang. Range-sample depth feature for action recognition. In CVPR, 2014.
    • (2014) CVPR
    • Lu, C.1    Jia, J.2    Tang, C.-K.3
  • 21
    • 84954026755 scopus 로고    scopus 로고
    • A survey of applications and human motion recognition with microsoft kinect
    • R. Lun and W. Zhao. A survey of applications and human motion recognition with microsoft kinect. IJPRAI, 2015.
    • (2015) IJPRAI
    • Lun, R.1    Zhao, W.2
  • 22
    • 84898787235 scopus 로고    scopus 로고
    • Group sparsity and geometry constrained dictionary learning for action recognition from depth maps
    • J. Luo, W. Wang, and H. Qi. Group sparsity and geometry constrained dictionary learning for action recognition from depth maps. In ICCV, 2013.
    • (2013) ICCV
    • Luo, J.1    Wang, W.2    Qi, H.3
  • 23
    • 84863061964 scopus 로고    scopus 로고
    • Rgbd-hudaact: A color-depth video database for human daily activity recognition
    • B. Ni, G. Wang, and P. Moulin. Rgbd-hudaact: A color-depth video database for human daily activity recognition. In ICCV Workshops, 2011.
    • (2011) ICCV Workshops
    • Ni, B.1    Wang, G.2    Moulin, P.3
  • 24
    • 84884965847 scopus 로고    scopus 로고
    • Joint angles similarities and hog2 for action recognition
    • E. Ohn-Bar and M. Trivedi. Joint angles similarities and hog2 for action recognition. In CVPR Workshops, 2013.
    • (2013) CVPR Workshops
    • Ohn-Bar, E.1    Trivedi, M.2
  • 25
    • 84887375927 scopus 로고    scopus 로고
    • Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences
    • O. Oreifej and Z. Liu. Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. In CVPR, 2013.
    • (2013) CVPR
    • Oreifej, O.1    Liu, Z.2
  • 26
    • 84995584051 scopus 로고    scopus 로고
    • Histogram of oriented principal components for cross-view action recognition
    • H. Rahmani, A. Mahmood, D. Huynh, and A. Mian. Histogram of oriented principal components for cross-view action recognition. TPAMI, 2016.
    • (2016) TPAMI
    • Rahmani, H.1    Mahmood, A.2    Huynh, D.3    Mian, A.4
  • 27
    • 84904663139 scopus 로고    scopus 로고
    • Real time action recognition using histograms of depth gradients and random decision forests
    • H. Rahmani, A. Mahmood, D. Q. Huynh, and A. Mian. Real time action recognition using histograms of depth gradients and random decision forests. In WACV, 2014.
    • (2014) WACV
    • Rahmani, H.1    Mahmood, A.2    Huynh, D.Q.3    Mian, A.4
  • 28
    • 84946810013 scopus 로고    scopus 로고
    • Hopc: Histogram of oriented principal components of 3d pointclouds for action recognition
    • H. Rahmani, A. Mahmood, D. Q Huynh, and A. Mian. Hopc: Histogram of oriented principal components of 3d pointclouds for action recognition. In ECCV. 2014.
    • (2014) ECCV
    • Rahmani, H.1    Mahmood, A.2    Huynh, D.Q.3    Mian, A.4
  • 29
    • 84958953227 scopus 로고    scopus 로고
    • Learning a non-linear knowledge transfer model for cross-view action recognition
    • H. Rahmani and A. Mian. Learning a non-linear knowledge transfer model for cross-view action recognition. In CVPR, 2015.
    • (2015) CVPR
    • Rahmani, H.1    Mian, A.2
  • 30
    • 84986313453 scopus 로고    scopus 로고
    • 3d action recognition from novel viewpoints
    • June
    • H. Rahmani and A. Mian. 3d action recognition from novel viewpoints. In CVPR, June 2016.
    • (2016) CVPR
    • Rahmani, H.1    Mian, A.2
  • 32
    • 84986267489 scopus 로고    scopus 로고
    • Multimodal multipart learning for action recognition in depth videos
    • A. Shahroudy, T. T. Ng, Q. Yang, and G. Wang. Multimodal multipart learning for action recognition in depth videos. TPAMI, 2016.
    • (2016) TPAMI
    • Shahroudy, A.1    Ng, T.T.2    Yang, Q.3    Wang, G.4
  • 33
    • 84906737910 scopus 로고    scopus 로고
    • Multi-modal feature fusion for action recognition in rgb-d sequences
    • A. Shahroudy, G. Wang, and T.-T. Ng. Multi-modal feature fusion for action recognition in rgb-d sequences. In ISCCSP, 2014.
    • (2014) ISCCSP
    • Shahroudy, A.1    Wang, G.2    Ng, T.-T.3
  • 35
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. V. Le. Sequence to sequence learning with neural networks. In NIPS. 2014.
    • (2014) NIPS.
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.V.3
  • 36
    • 84973920651 scopus 로고    scopus 로고
    • Differential recurrent neural networks for action recognition
    • V. Veeriah, N. Zhuang, and G.-J. Qi. Differential recurrent neural networks for action recognition. In ICCV, 2015.
    • (2015) ICCV
    • Veeriah, V.1    Zhuang, N.2    Qi, G.-J.3
  • 37
    • 84911376484 scopus 로고    scopus 로고
    • Human action recognition by representing 3d skeletons as points in a lie group
    • R. Vemulapalli, F. Arrate, and R. Chellappa. Human action recognition by representing 3d skeletons as points in a lie group. In CVPR, 2014.
    • (2014) CVPR
    • Vemulapalli, R.1    Arrate, F.2    Chellappa, R.3
  • 38
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for action recognition with depth cameras. In CVPR, 2012.
    • (2012) CVPR
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 39
    • 84900557701 scopus 로고    scopus 로고
    • Learning actionlet ensemble for 3d human action recognition
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan. Learning actionlet ensemble for 3d human action recognition. TPAMI, 2014.
    • (2014) TPAMI
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 40
    • 84911405305 scopus 로고    scopus 로고
    • Cross-view action modeling, learning, and recognition
    • J. Wang, X. Nie, Y. Xia, Y. Wu, and S.-C. Zhu. Cross-view action modeling, learning, and recognition. In CVPR, 2014.
    • (2014) CVPR
    • Wang, J.1    Nie, X.2    Xia, Y.3    Wu, Y.4    Zhu, S.-C.5
  • 41
    • 84941256290 scopus 로고    scopus 로고
    • 3d human activity recognition with reconfigurable convolutional neural networks
    • K. Wang, X. Wang, L. Lin, M. Wang, andW. Zuo. 3d human activity recognition with reconfigurable convolutional neural networks. In ACM MM, 2014.
    • (2014) ACM MM
    • Wang, K.1    Wang, X.2    Lin, L.3    Wang, M.4    Zuo, W.5
  • 42
    • 85026286023 scopus 로고    scopus 로고
    • Action recognition from depth maps using deep convolutional neural networks
    • P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. Ogunbona. Action recognition from depth maps using deep convolutional neural networks. In THMS, 2015.
    • (2015) THMS
    • Wang, P.1    Li, W.2    Gao, Z.3    Zhang, J.4    Tang, C.5    Ogunbona, P.6
  • 43
    • 84898777476 scopus 로고    scopus 로고
    • Modeling 4d human-object interactions for event and object recognition
    • P. Wei, Y. Zhao, N. Zheng, and S.-C. Zhu. Modeling 4d human-object interactions for event and object recognition. In ICCV, 2013.
    • (2013) ICCV
    • Wei, P.1    Zhao, Y.2    Zheng, N.3    Zhu, S.-C.4
  • 44
    • 84911437630 scopus 로고    scopus 로고
    • Super normal vector for activity recognition using depth sequences
    • X. Yang and Y. Tian. Super normal vector for activity recognition using depth sequences. In CVPR, 2014.
    • (2014) CVPR
    • Yang, X.1    Tian, Y.2
  • 46
    • 84965038400 scopus 로고    scopus 로고
    • Discriminative orderlet mining for real-time recognition of human-object interaction
    • G. Yu, Z. Liu, and J. Yuan. Discriminative orderlet mining for real-time recognition of human-object interaction. In ACCV, 2014.
    • (2014) ACCV
    • Yu, G.1    Liu, Z.2    Yuan, J.3
  • 48
    • 84860660860 scopus 로고    scopus 로고
    • Microsoft kinect sensor and its effect
    • Z. Zhang. Microsoft kinect sensor and its effect. IEEE MultiMedia, 2012.
    • (2012) IEEE MultiMedia
    • Zhang, Z.1
  • 49
    • 85007199276 scopus 로고    scopus 로고
    • Co-occurrence feature learning for skeleton based action recognition using regularized deep lstm networks
    • W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie. Co-occurrence feature learning for skeleton based action recognition using regularized deep lstm networks. AAAI, 2016.
    • (2016) AAAI
    • Zhu, W.1    Lan, C.2    Xing, J.3    Zeng, W.4    Li, Y.5    Shen, L.6    Xie, X.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.