메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 4362-4370

Watch-n-patch: Unsupervised understanding of actions and relations

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION;

EID: 84959198612     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299065     Document Type: Conference Paper
Times cited : (128)

References (43)
  • 1
    • 85026930581 scopus 로고    scopus 로고
    • Kinect v2 sensor. http://www. microsoft. com/en-us/kinectforwindows/develop/
    • Kinect v2 Sensor
  • 2
    • 84911436916 scopus 로고    scopus 로고
    • Video classification using semantic concept co-occurrences
    • S. M. Assari, A. R. Zamir, and M. Shah. Video classification using semantic concept co-occurrences. In CVPR, 2014
    • (2014) CVPR
    • Assari, S.M.1    Zamir, A.R.2    Shah, M.3
  • 3
    • 84911400185 scopus 로고    scopus 로고
    • Recognition of complex events: Exploiting temporal dynamics between underlying concepts
    • S. Bhattacharya, M. M. Kalayeh, R. Sukthankar, and M. Shah. Recognition of complex events: Exploiting temporal dynamics between underlying concepts. In CVPR, 2014
    • (2014) CVPR
    • Bhattacharya, S.1    Kalayeh, M.M.2    Sukthankar, R.3    Shah, M.4
  • 6
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993-1022, 2003
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 8
    • 84898820142 scopus 로고    scopus 로고
    • Structured forests for fast edge detection
    • P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In ICCV, 2013
    • (2013) ICCV
    • Dollár, P.1    Zitnick, C.L.2
  • 10
    • 84898861423 scopus 로고    scopus 로고
    • Time based activity inference using latent dirichlet allocation
    • T. A. Faruquie, P. K. Kalra, and S. Banerjee. Time based activity inference using latent dirichlet allocation. In BMVC, 2009
    • (2009) BMVC
    • Faruquie, T.A.1    Kalra, P.K.2    Banerjee, S.3
  • 12
    • 80052873938 scopus 로고    scopus 로고
    • Joint segmentation and classification of human actions in video
    • M. Hoai, Z. zhong Lan, and F. De la Torre. Joint segmentation and classification of human actions in video. In CVPR, 2011
    • (2011) CVPR
    • Hoai, M.1    Zhong Lan, Z.2    De La Torre, F.3
  • 13
    • 84911368077 scopus 로고    scopus 로고
    • Unsupervised spectral dual assignment clustering of human actions in context
    • S. Jones and L. Shao. Unsupervised spectral dual assignment clustering of human actions in context. In CVPR, 2014
    • (2014) CVPR
    • Jones, S.1    Shao, L.2
  • 14
    • 84911441074 scopus 로고    scopus 로고
    • Efficient feature extraction, encoding and classification for action recognition
    • V. Kantorov and I. Laptev. Efficient feature extraction, encoding and classification for action recognition. In CVPR, 2014
    • (2014) CVPR
    • Kantorov, V.1    Laptev, I.2
  • 15
    • 50649103739 scopus 로고    scopus 로고
    • Event detection in crowded videos
    • Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In ECCV, 2007
    • (2007) ECCV
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 16
    • 85162307426 scopus 로고    scopus 로고
    • The doubly correlated nonparametric topic model
    • D. I. Kim and E. B. Sudderth. The doubly correlated nonparametric topic model. In NIPS, 2011
    • (2011) NIPS
    • Kim, D.I.1    Sudderth, E.B.2
  • 18
    • 84893770737 scopus 로고    scopus 로고
    • Anticipating human activities using object affordances for reactive robotic response
    • H. S. Koppula and A. Saxena. Anticipating human activities using object affordances for reactive robotic response. In RSS, 2013
    • (2013) RSS
    • Koppula, H.S.1    Saxena, A.2
  • 19
    • 84897508000 scopus 로고    scopus 로고
    • Learning spatio-temporal structure from RGB-D videos for human activity detection and anticipation
    • H. S. Koppula and A. Saxena. Learning spatio-temporal structure from RGB-D videos for human activity detection and anticipation. In ICML, 2013
    • (2013) ICML
    • Koppula, H.S.1    Saxena, A.2
  • 20
    • 84911445034 scopus 로고    scopus 로고
    • The language of actions: Recovering the syntax and semantics of goal-directed human activities
    • H. Kuehne, A. Arslan, and T. Serre. The language of actions: Recovering the syntax and semantics of goal-directed human activities. In CVPR, 2014
    • (2014) CVPR
    • Kuehne, H.1    Arslan, A.2    Serre, T.3
  • 21
    • 50649122769 scopus 로고    scopus 로고
    • Retrieving actions in movies
    • I. Laptev and P. Perez. Retrieving actions in movies. In ICCV, 2007
    • (2007) ICCV
    • Laptev, I.1    Perez, P.2
  • 22
    • 84911412300 scopus 로고    scopus 로고
    • Depth and skeleton associated action recognition without online accessible rgb-d cameras
    • Y.-Y. Lin, J.-H. Hua, N. C. Tang, M.-H. Chen, and H.-Y. Mark Liao. Depth and skeleton associated action recognition without online accessible rgb-d cameras. In CVPR, 2014
    • (2014) CVPR
    • Lin, Y.-Y.1    Hua, J.-H.2    Tang, N.C.3    Chen, M.-H.4    Mark Liao, H.-Y.5
  • 23
    • 80052915325 scopus 로고    scopus 로고
    • Recognizing human actions by attributes
    • J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, 2011
    • (2011) CVPR
    • Liu, J.1    Kuipers, B.2    Savarese, S.3
  • 24
    • 85026925006 scopus 로고    scopus 로고
    • Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition
    • S. Mathe and C. Sminchisescu. Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition. TPAMI, 2014
    • (2014) TPAMI
    • Mathe, S.1    Sminchisescu, C.2
  • 25
    • 84911397627 scopus 로고    scopus 로고
    • Multiple granularity analysis for fine-grained action detection
    • B. Ni, V. R. Paramathayalan, and P. Moulin. Multiple granularity analysis for fine-grained action detection. In CVPR, 2014
    • (2014) CVPR
    • Ni, B.1    Paramathayalan, V.R.2    Moulin, P.3
  • 26
    • 80052874353 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling temporal structure of decomposable motion segments for activity classification. In ECCV, 2010
    • (2010) ECCV
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 27
    • 84911384466 scopus 로고    scopus 로고
    • Parsing videos of actions with segmental grammars
    • H. Pirsiavash and D. Ramanan. Parsing videos of actions with segmental grammars. In CVPR, 2014
    • (2014) CVPR
    • Pirsiavash, H.1    Ramanan, D.2
  • 29
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • S. Sadanand and J. J. Corso. Action bank: A high-level representation of activity in video. In CVPR, 2012
    • (2012) CVPR
    • Sadanand, S.1    Corso, J.J.2
  • 31
    • 84866710901 scopus 로고    scopus 로고
    • A database for fine grained activity detection of cooking activities
    • B. Schiele. A database for fine grained activity detection of cooking activities. In CVPR, 2012
    • (2012) CVPR
    • Schiele, B.1
  • 32
    • 79953179659 scopus 로고    scopus 로고
    • Human action segmentation and recognition using discriminative semi-markov models
    • Q. Shi, L. Cheng, L. Wang, and A. Smola. Human action segmentation and recognition using discriminative semi-markov models. IJCV, 93(1):22-32, 2011
    • (2011) IJCV , vol.93 , Issue.1 , pp. 22-32
    • Shi, Q.1    Cheng, L.2    Wang, L.3    Smola, A.4
  • 33
    • 84864487638 scopus 로고    scopus 로고
    • Unstructured human activity detection from rgbd images
    • J. Sung, C. Ponce, B. Selman, and A. Saxena. Unstructured human activity detection from rgbd images. In ICRA, 2012
    • (2012) ICRA
    • Sung, J.1    Ponce, C.2    Selman, B.3    Saxena, A.4
  • 34
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, 2012
    • (2012) CVPR
    • Tang, K.1    Fei-Fei, L.2    Koller, D.3
  • 35
    • 84887356306 scopus 로고    scopus 로고
    • Spatiotemporal deformable part models for action detection
    • Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable part models for action detection. In CVPR, 2013
    • (2013) CVPR
    • Tian, Y.1    Sukthankar, R.2    Shah, M.3
  • 36
    • 84911376484 scopus 로고    scopus 로고
    • Human action recognition by representing 3d skeletons as points in a lie group
    • R. Vemulapalli, F. Arrate, and R. Chellappa. Human action recognition by representing 3d skeletons as points in a lie group. In CVPR, 2014
    • (2014) CVPR
    • Vemulapalli, R.1    Arrate, F.2    Chellappa, R.3
  • 37
    • 84911418323 scopus 로고    scopus 로고
    • From stochastic grammar to bayes network: Probabilistic parsing of complex activity
    • N. N. Vo and A. F. Bobick. From stochastic grammar to bayes network: Probabilistic parsing of complex activity. In CVPR, 2014
    • (2014) CVPR
    • Vo, N.N.1    Bobick, A.F.2
  • 39
    • 84911424516 scopus 로고    scopus 로고
    • A hierarchical context model for event recognition in surveillance video
    • X. Wang and Q. Ji. A hierarchical context model for event recognition in surveillance video. In CVPR, 2014
    • (2014) CVPR
    • Wang, X.1    Ji, Q.2
  • 40
    • 33749565782 scopus 로고    scopus 로고
    • Topics over time: A non-markov continuous-time model of topical trends
    • X. Wang and A. McCallum. Topics over time: A non-markov continuous-time model of topical trends. In KDD, 2006
    • (2006) KDD
    • Wang, X.1    McCallum, A.2
  • 41
    • 85131224704 scopus 로고    scopus 로고
    • Hierarchical semantic labeling for task-relevant rgb-d perception
    • C. Wu, I. Lenz, and A. Saxena. Hierarchical semantic labeling for task-relevant rgb-d perception. In RSS, 2014
    • (2014) RSS
    • Wu, C.1    Lenz, I.2    Saxena, A.3
  • 42
    • 84911438024 scopus 로고    scopus 로고
    • Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition
    • D. Wu and L. Shao. Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In CVPR, 2014
    • (2014) CVPR
    • Wu, D.1    Shao, L.2
  • 43
    • 84878144777 scopus 로고    scopus 로고
    • Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions
    • Y. Yang, I. Saleemi, and M. Shah. Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions. TPAMI, 35(7):1635-1648, 2013.
    • (2013) TPAMI , vol.35 , Issue.7 , pp. 1635-1648
    • Yang, Y.1    Saleemi, I.2    Shah, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.