메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 4694-4702

Beyond short snippets: Deep networks for video classification

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; IMAGE RECOGNITION; IMAGE SEGMENTATION; NEURAL NETWORKS; PATTERN RECOGNITION; RECURRENT NEURAL NETWORKS; VIDEO STREAMING;

EID: 84959228762     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299101     Document Type: Conference Paper
Times cited : (2418)

References (28)
  • 1
    • 78049380429 scopus 로고    scopus 로고
    • Action classification in soccer videos with long short-term memory recurrent neural networks
    • Thessaloniki, Greece
    • M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt. Action classification in soccer videos with long short-term memory recurrent neural networks. In Proc. ICANN, pages 154-159, Thessaloniki, Greece, 2010.
    • (2010) Proc. ICANN , pp. 154-159
    • Baccouche, M.1    Mamalet, F.2    Wolf, C.3    Garcia, C.4    Baskurt, A.5
  • 3
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. on Neural Networks, 5(2):157-166, 1994.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 4
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Haifa, Israel
    • Y.-L. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of feature pooling in visual recognition. In Proc. ICML, pages 111-118, Haifa, Israel, 2010.
    • (2010) Proc. ICML , pp. 111-118
    • Boureau, Y.-L.1    Ponce, J.2    LeCun, Y.3
  • 6
    • 0041965934 scopus 로고    scopus 로고
    • Learning precise timing with LSTM recurrent networks
    • F. A. Gers, N. N. Schraudolph, and J. Schmidhuber. Learning precise timing with LSTM recurrent networks. JMLR, 3:115-143, 2002.
    • (2002) JMLR , vol.3 , pp. 115-143
    • Gers, F.A.1    Schraudolph, N.N.2    Schmidhuber, J.3
  • 7
    • 84936143793 scopus 로고    scopus 로고
    • Towards end-to-end speech recognition with recurrent neural networks
    • Beijing, China
    • A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In Proc. ICML, pages 1764-1772, Beijing, China, 2014.
    • (2014) Proc. ICML , pp. 1764-1772
    • Graves, A.1    Jaitly, N.2
  • 10
    • 71249112130 scopus 로고    scopus 로고
    • Offline handwriting recognition with multidimensional recurrent neural networks
    • Vancouver, B. C. , Canada
    • A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural networks. In Proc. NIPS, pages 545-552, Vancouver, B. C. , Canada, 2008.
    • (2008) Proc. NIPS , pp. 545-552
    • Graves, A.1    Schmidhuber, J.2
  • 11
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Nov.
    • S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computing, 9(8):1735-1780, Nov. 1997.
    • (1997) Neural Computing , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 12
    • 84887398298 scopus 로고    scopus 로고
    • Better exploiting motion for better action recognition
    • Portland, Oregon, USA
    • M. Jain, H. Jégou, and P. Bouthemy. Better exploiting motion for better action recognition. In Proc. CVPR, pages 2555-2562, Portland, Oregon, USA, 2013.
    • (2013) Proc. CVPR , pp. 2555-2562
    • Jain, M.1    Jégou, H.2    Bouthemy, P.3
  • 13
    • 84870183903 scopus 로고    scopus 로고
    • 3D convolutional neural networks for human action recognition
    • Jan.
    • S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural networks for human action recognition. IEEE Trans. PAMI, 35(1):221-231, Jan. 2013.
    • (2013) IEEE Trans. PAMI , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 14
    • 84911364368 scopus 로고    scopus 로고
    • Large-scale video classification with convolutional neural networks
    • Columbus, Ohio, USA
    • A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In Proc. CVPR, pages 1725-1732, Columbus, Ohio, USA, 2014.
    • (2014) Proc. CVPR , pp. 1725-1732
    • Karpathy, A.1    Toderici, G.2    Shetty, S.3    Leung, T.4    Sukthankar, R.5    Fei-Fei, L.6
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Lake Tahoe, Nevada, USA
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proc. NIPS, pages 1097-1105, Lake Tahoe, Nevada, USA, 2012.
    • (2012) Proc. NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 84856682691 scopus 로고    scopus 로고
    • HMDB: A large video database for human motion recognition
    • Barcelona, Spain
    • H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A large video database for human motion recognition. In Proc. ICCV, pages 2556-2563, Barcelona, Spain, 2011.
    • (2011) Proc. ICCV , pp. 2556-2563
    • Kuehne, H.1    Jhuang, H.2    Garrote, E.3    Poggio, T.4    Serre, T.5
  • 17
    • 51949083365 scopus 로고    scopus 로고
    • Learning realistic human actions from movies
    • Anchorage, Alaska, USA
    • I. Laptev, M. Marszaek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from movies. In Proc. CVPR, pages 1-8, Anchorage, Alaska, USA, 2008.
    • (2008) Proc. CVPR , pp. 1-8
    • Laptev, I.1    Marszaek, M.2    Schmid, C.3    Rozenfeld, B.4
  • 18
    • 33947655366 scopus 로고    scopus 로고
    • A combined LSTMRNN-HMM-approach for meeting event segmentation and recognition
    • Toulouse, France
    • S. Reiter, B. Schuller, and G. Rigoll. A combined LSTMRNN-HMM-approach for meeting event segmentation and recognition. In Proc. ICASSP, pages 393-396, Toulouse, France, 2006.
    • (2006) Proc. ICASSP , pp. 393-396
    • Reiter, S.1    Schuller, B.2    Rigoll, G.3
  • 19
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • Montreal, Canada
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In Proc. NIPS, pages 568-576, Montreal, Canada, 2014.
    • (2014) Proc. NIPS , pp. 568-576
    • Simonyan, K.1    Zisserman, A.2
  • 20
    • 84904972001 scopus 로고    scopus 로고
    • UCF101: A dataset of 101 human actions classes from videos in the wild
    • K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. In CRCV-TR-12-01, 2012.
    • (2012) CRCV-TR-12-01
    • Soomro, K.1    Zamir, A.R.2    Shah, M.3
  • 22
    • 80052877143 scopus 로고    scopus 로고
    • Action recognition by dense trajectories
    • Washington, DC, USA
    • H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Action recognition by dense trajectories. In Proc. CVPR, pages 3169-3176, Washington, DC, USA, 2011.
    • (2011) Proc. CVPR , pp. 3169-3176
    • Wang, H.1    Klaser, A.2    Schmid, C.3    Liu, C.-L.4
  • 23
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • Sydney, Australia
    • H. Wang and C. Schmid. Action Recognition with Improved Trajectories. In Proc. ICCV, pages 3551-3558, Sydney, Australia, 2013.
    • (2013) Proc. ICCV , pp. 3551-3558
    • Wang, H.1    Schmid, C.2
  • 24
    • 84898890371 scopus 로고    scopus 로고
    • Evaluation of local spatio-temporal features for action recognition
    • H. Wang, M. M. Ullah, A. Klser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features for action recognition. In Proc. BMVC, pages 1-11, 2009.
    • (2009) Proc. BMVC , pp. 1-11
    • Wang, H.1    Ullah, M.M.2    Klser, A.3    Laptev, I.4    Schmid, C.5
  • 25
    • 84886418479 scopus 로고    scopus 로고
    • LSTM-modeling of continuous emotions in an audiovisual affect recognition framework
    • M. Wllmer, M. Kaiser, F. Eyben, B. Schuller, and G. Rigoll. LSTM-modeling of continuous emotions in an audiovisual affect recognition framework. Image Vision Computing, 31(2):153-163, 2013.
    • (2013) Image Vision Computing , vol.31 , Issue.2 , pp. 153-163
    • Wllmer, M.1    Kaiser, M.2    Eyben, F.3    Schuller, B.4    Rigoll, G.5
  • 28
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Zurich, Switzerland
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Proc. ECCV, pages 818-833, Zurich, Switzerland, 2014.
    • (2014) Proc. ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.