-
1
-
-
84869222326
-
ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs
-
Alemu, E.A., T. Lamark, K.M. Torgersen, A.B. Birgisdottir, K.B. Larsen, A. Jain, H. Olsvik, A. Øvervatn, V. Kirkin, and T. Johansen. 2012. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287:39275-39290. https ://doi. org /10. 1074 /jbc. M112. 378109
-
(2012)
J. Biol. Chem
, vol.287
, pp. 39275-39290
-
-
Alemu, E.A.1
Lamark, T.2
Torgersen, K.M.3
Birgisdottir, A.B.4
Larsen, K.B.5
Jain, A.6
Olsvik, H.7
Øvervatn, A.8
Kirkin, V.9
Johansen, T.10
-
2
-
-
84922891786
-
A role for the ancient SNA RE syntaxin 17 in regulating mitochondrial division
-
Arasaki, K., H. Shimizu, H. Mogari, N. Nishida, N. Hirota, A. Furuno, Y. Kudo, M. Baba, N. Baba, J. Cheng, et al. 2015. A role for the ancient SNA RE syntaxin 17 in regulating mitochondrial division. Dev. Cell. 32:304-317. https ://doi. org /10. 1016 /j. devcel. 2014. 12. 011
-
(2015)
Dev. Cell
, vol.32
, pp. 304-317
-
-
Arasaki, K.1
Shimizu, H.2
Mogari, H.3
Nishida, N.4
Hirota, N.5
Furuno, A.6
Kudo, Y.7
Baba, M.8
Baba, N.9
Cheng, J.10
-
3
-
-
84941356670
-
A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNA RE assembly
-
Baker, R.W., P.D. Jeffrey, M. Zick, B.P. Phillips, W.T. Wickner, and F.M. Hughson. 2015. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNA RE assembly. Science. 349:1111-1114. https ://doi. org /10. 1126 /science. aac7906
-
(2015)
Science
, vol.349
, pp. 1111-1114
-
-
Baker, R.W.1
Jeffrey, P.D.2
Zick, M.3
Phillips, B.P.4
Wickner, W.T.5
Hughson, F.M.6
-
4
-
-
84877886601
-
COR VET and HOPS tethering complexes-coordinators of endosome and lysosome fusion
-
Balderhaar, H.J., and C. Ungermann. 2013. COR VET and HOPS tethering complexes-coordinators of endosome and lysosome fusion. J. Cell Sci. 126:1307-1316. https ://doi. org /10. 1242 /jcs. 107805
-
(2013)
J. Cell Sci
, vol.126
, pp. 1307-1316
-
-
Balderhaar, H.J.1
Ungermann, C.2
-
5
-
-
77954237882
-
Network organization of the human autophagy system
-
Behrends, C., M.E. Sowa, S.P. Gygi, and J.W. Harper. 2010. Network organization of the human autophagy system. Nature. 466:68-76. https ://doi. org /10. 1038 /nature09204
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
Sowa, M.E.2
Gygi, S.P.3
Harper, J.W.4
-
6
-
-
84883414890
-
The LIR motif-crucial for selective autophagy
-
Birgisdottir, A.B., T. Lamark, and T. Johansen. 2013. The LIR motif-crucial for selective autophagy. J. Cell Sci. 126:3237-3247
-
(2013)
J. Cell Sci
, vol.126
, pp. 3237-3247
-
-
Birgisdottir, A.B.1
Lamark, T.2
Johansen, T.3
-
7
-
-
84928926952
-
IRGM governs the core autophagy machinery to conduct antimicrobial defense
-
Chauhan, S., M.A. Mandell, and V. Deretic. 2015. IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol. Cell. 58:507-521. https ://doi. org /10. 1016 /j. molcel. 2015. 03. 020
-
(2015)
Mol. Cell
, vol.58
, pp. 507-521
-
-
Chauhan, S.1
Mandell, M.A.2
Deretic, V.3
-
8
-
-
84992645517
-
TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis
-
Chauhan, S., S. Kumar, A. Jain, M. Ponpuak, M.H. Mudd, T. Kimura, S.W. Choi, R. Peters, M. Mandell, J.A. Bruun, et al. 2016. TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. Dev. Cell. 39:13-27. https ://doi. org /10. 1016 /j. devcel. 2016. 08. 003
-
(2016)
Dev. Cell
, vol.39
, pp. 13-27
-
-
Chauhan, S.1
Kumar, S.2
Jain, A.3
Ponpuak, M.4
Mudd, M.H.5
Kimura, T.6
Choi, S.W.7
Peters, R.8
Mandell, M.9
Bruun, J.A.10
-
9
-
-
0035972909
-
Looking for Natural Patterns in Dat. Part 1. Density Based Approach
-
Daszykowski, M., B. Walczak, and D. Massart. 2001. Looking for Natural Patterns in Data. Part 1. Density Based Approach. Chemom. Intell. Lab. Syst. 56:83-92. https ://doi. org /10. 1016 /S0169-7439(01)00111-3
-
(2001)
Chemom. Intell. Lab. Syst
, vol.56
, pp. 83-92
-
-
Daszykowski, M.1
Walczak, B.2
Massart, D.3
-
10
-
-
77955077765
-
Autophagy of intracellular microbes and mitochondria: two sides of the same coin? F1000 Biol
-
Deretic, V. 2010. Autophagy of intracellular microbes and mitochondria: two sides of the same coin? F1000 Biol. Rep. 2:45. https ://doi. org /10. 3410 /B2-45
-
(2010)
Rep
, vol.2
, pp. 45
-
-
Deretic, V.1
-
11
-
-
84928550400
-
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
-
Diao, J., R. Liu, Y. Rong, M. Zhao, J. Zhang, Y. Lai, Q. Zhou, L.M. Wilz, J. Li, S. Vivona, et al. 2015. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature. 520:563-566. https ://doi. org /10. 1038 /nature14147
-
(2015)
Nature
, vol.520
, pp. 563-566
-
-
Diao, J.1
Liu, R.2
Rong, Y.3
Zhao, M.4
Zhang, J.5
Lai, Y.6
Zhou, Q.7
Wilz, L.M.8
Li, J.9
Vivona, S.10
-
12
-
-
0030735370
-
Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation
-
Fasshauer, D., H. Otto, W.K. Eliason, R. Jahn, and A.T. Brünger. 1997. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem. 272:28036-28041. https ://doi. org /10. 1074 /jbc. 272. 44. 28036
-
(1997)
J. Biol. Chem
, vol.272
, pp. 28036-28041
-
-
Fasshauer, D.1
Otto, H.2
Eliason, W.K.3
Jahn, R.4
Brünger, A.T.5
-
13
-
-
84920380278
-
The functional and pathologic relevance of autophagy proteases
-
Fernández, A.F., and C. López-Otín. 2015. The functional and pathologic relevance of autophagy proteases. J. Clin. Invest. 125:33-41. https ://doi. org /10. 1172 /JCI73940
-
(2015)
J. Clin. Invest
, vol.125
, pp. 33-41
-
-
Fernández, A.F.1
López-Otín, C.2
-
14
-
-
85009836949
-
The Ubiquitin Ligase Smurf1 Functions in Selective Autophagy of Mycobacterium tuberculosis and Anti-tuberculous Host Defense
-
Franco, L.H., V.R. Nair, C.R. Scharn, R.J. Xavier, J.R. Torrealba, M.U. Shiloh, and B. Levine. 2017. The Ubiquitin Ligase Smurf1 Functions in Selective Autophagy of Mycobacterium tuberculosis and Anti-tuberculous Host Defense. Cell Host Microbe. 21:59-72. https ://doi. org /10. 1016 /j. chom. 2016. 11. 002
-
(2017)
Cell Host Microbe
, vol.21
, pp. 59-72
-
-
Franco, L.H.1
Nair, V.R.2
Scharn, C.R.3
Xavier, R.J.4
Torrealba, J.R.5
Shiloh, M.U.6
Levine, B.7
-
15
-
-
58149290220
-
An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure
-
Fujita, N., M. Hayashi-Nishino, H. Fukumoto, H. Omori, A. Yamamoto, T. Noda, and T. Yoshimori. 2008. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell. 19:4651-4659. https ://doi. org /10. 1091 /mbc. E08-03-0312
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4651-4659
-
-
Fujita, N.1
Hayashi-Nishino, M.2
Fukumoto, H.3
Omori, H.4
Yamamoto, A.5
Noda, T.6
Yoshimori, T.7
-
16
-
-
77949448601
-
Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes
-
Furuta, N., N. Fujita, T. Noda, T. Yoshimori, and A. Amano. 2010. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell. 21:1001-1010. https :// doi. org /10. 1091 /mbc. E09-08-0693
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 1001-1010
-
-
Furuta, N.1
Fujita, N.2
Noda, T.3
Yoshimori, T.4
Amano, A.5
-
17
-
-
84881506338
-
The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
-
Ge, L., D. Melville, M. Zhang, and R. Schekman. 2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife. 2:e00947. https ://doi. org /10. 7554 /eLife. 00947
-
(2013)
eLife
, vol.2
-
-
Ge, L.1
Melville, D.2
Zhang, M.3
Schekman, R.4
-
18
-
-
84855293818
-
IRGM is a common target of RNA viruses that subvert the autophagy network
-
Grégoire, I.P., C. Richetta, L. Meyniel-Schicklin, S. Borel, F. Pradezynski, O. Diaz, A. Deloire, O. Azocar, J. Baguet, M. Le Breton, et al. 2011. IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog. 7:e1002422. https ://doi. org /10. 1371 /journal. ppat. 1002422
-
(2011)
PLoS Pathog
, vol.7
-
-
Grégoire, I.P.1
Richetta, C.2
Meyniel-Schicklin, L.3
Borel, S.4
Pradezynski, F.5
Diaz, O.6
Deloire, A.7
Azocar, O.8
Baguet, J.9
Le Breton, M.10
-
19
-
-
84981489434
-
Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans
-
Grussendorf, K.A., C.J. Trezza, A.T. Salem, H. Al-Hashimi, B.C. Mattingly, D.E. Kampmeyer, L.A. Khan, D.H. Hall, V. Göbel, B.D. Ackley, and M. Buechner. 2016. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans. Genetics. 203:1789-1806. https ://doi. org /10. 1534 /genetics. 116. 192559
-
(2016)
Genetics
, vol.203
, pp. 1789-1806
-
-
Grussendorf, K.A.1
Trezza, C.J.2
Salem, A.T.3
Al-Hashimi, H.4
Mattingly, B.C.5
Kampmeyer, D.E.6
Khan, L.A.7
Hall, D.H.8
Göbel, V.9
Ackley, B.D.10
Buechner, M.11
-
20
-
-
84925284243
-
O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
-
Guo, B., Q. Liang, L. Li, Z. Hu, F. Wu, P. Zhang, Y. Ma, B. Zhao, A.L. Kovács, Z. Zhang, et al. 2014. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16:1215-1226. https ://doi. org /10. 1038 /ncb3066
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 1215-1226
-
-
Guo, B.1
Liang, Q.2
Li, L.3
Hu, Z.4
Wu, F.5
Zhang, P.6
Ma, Y.7
Zhao, B.8
Kovács, A.L.9
Zhang, Z.10
-
21
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
Gutierrez, M.G., S.S. Master, S.B. Singh, G.A. Taylor, M.I. Colombo, and V. Deretic. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 119:753-766. https ://doi. org /10. 1016 /j. cell. 2004. 11. 038
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
22
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki, M., N. Furuta, A. Matsuda, A. Nezu, A. Yamamoto, N. Fujita, H. Oomori, T. Noda, T. Haraguchi, Y. Hiraoka, et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature. 495:389-393. https ://doi. org /10. 1038 /nature11910
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
-
23
-
-
84870880174
-
The hairpin-type tailanchored SNA RE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura, E., C. Kishi-Itakura, and N. Mizushima. 2012. The hairpin-type tailanchored SNA RE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 151:1256-1269. https ://doi. org /10. 1016 /j. cell. 2012. 11. 001
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
24
-
-
33747622293
-
SNA REs-engines for membrane fusion
-
Jahn, R., and R.H. Scheller. 2006. SNA REs-engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7:631-643. https ://doi. org /10. 1038 /nrm2002
-
(2006)
Nat. Rev. Mol. Cell Biol
, vol.7
, pp. 631-643
-
-
Jahn, R.1
Scheller, R.H.2
-
25
-
-
84901381389
-
The HOPS complex mediates autophagosomelysosome fusion through interaction with syntaxin 17
-
Jiang, P., T. Nishimura, Y. Sakamaki, E. Itakura, T. Hatta, T. Natsume, and N. Mizushima. 2014. The HOPS complex mediates autophagosomelysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell. 25:1327-1337. https ://doi. org /10. 1091 /mbc. E13-08-0447
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1327-1337
-
-
Jiang, P.1
Nishimura, T.2
Sakamaki, Y.3
Itakura, E.4
Hatta, T.5
Natsume, T.6
Mizushima, N.7
-
26
-
-
84955242756
-
Ubiquitin-Dependent And Independent Signals In Selective Autophagy
-
Khaminets, A., C. Behl, and I. Dikic. 2016. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol. 26:6-16. https ://doi. org /10. 1016 /j. tcb. 2015. 08. 010
-
(2016)
Trends Cell Biol
, vol.26
, pp. 6-16
-
-
Khaminets, A.1
Behl, C.2
Dikic, I.3
-
27
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescenttagged LC3
-
Kimura, S., T. Noda, and T. Yoshimori. 2007. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescenttagged LC3. Autophagy. 3:452-460. https ://doi. org /10. 4161 /auto. 4451
-
(2007)
Autophagy
, vol.3
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
28
-
-
84960432718
-
TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity
-
Kimura, T., A. Jain, S.W. Choi, M.A. Mandell, K. Schroder, T. Johansen, and V. Deretic. 2015. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210:973-989. https ://doi. org /10. 1083 /jcb. 201503023
-
(2015)
J. Cell Biol
, vol.210
, pp. 973-989
-
-
Kimura, T.1
Jain, A.2
Choi, S.W.3
Mandell, M.A.4
Schroder, K.5
Johansen, T.6
Deretic, V.7
-
29
-
-
84960354182
-
Precision autophagy directed by receptor regulators-emerging examples within the TRIM family
-
Kimura, T., M. Mandell, and V. Deretic. 2016. Precision autophagy directed by receptor regulators-emerging examples within the TRIM family. J. Cell Sci. 129:881-891. https ://doi. org /10. 1242 /jcs. 163758
-
(2016)
J. Cell Sci
, vol.129
, pp. 881-891
-
-
Kimura, T.1
Mandell, M.2
Deretic, V.3
-
30
-
-
85006483271
-
Dedicated SNA REs and specialized TRIM cargo receptors mediate secretory autophagy
-
Kimura, T., J. Jia, S. Kumar, S.W. Choi, Y. Gu, M. Mudd, N. Dupont, S. Jiang, R. Peters, F. Farzam, et al. 2017. Dedicated SNA REs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J. 36:42-60. https ://doi. org /10. 15252 /embj. 201695081
-
(2017)
EMBO J
, vol.36
, pp. 42-60
-
-
Kimura, T.1
Jia, J.2
Kumar, S.3
Choi, S.W.4
Gu, Y.5
Mudd, M.6
Dupont, N.7
Jiang, S.8
Peters, R.9
Farzam, F.10
-
31
-
-
67649585835
-
Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages
-
Kyei, G.B., C. Dinkins, A.S. Davis, E. Roberts, S.B. Singh, C. Dong, L. Wu, E. Kominami, T. Ueno, A. Yamamoto, et al. 2009. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 186:255-268. https ://doi. org /10. 1083 /jcb. 200903070
-
(2009)
J. Cell Biol
, vol.186
, pp. 255-268
-
-
Kyei, G.B.1
Dinkins, C.2
Davis, A.S.3
Roberts, E.4
Singh, S.B.5
Dong, C.6
Wu, L.7
Kominami, E.8
Ueno, T.9
Yamamoto, A.10
-
32
-
-
84926166583
-
Directed evolution of APEX2 for electron microscopy and proximity labeling
-
Lam, S.S., J.D. Martell, K.J. Kamer, T.J. Deerinck, M.H. Ellisman, V.K. Mootha, and A.Y. Ting. 2015. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods. 12:51-54. https ://doi. org /10. 1038 /nmeth. 3179
-
(2015)
Nat. Methods
, vol.12
, pp. 51-54
-
-
Lam, S.S.1
Martell, J.D.2
Kamer, K.J.3
Deerinck, T.J.4
Ellisman, M.H.5
Mootha, V.K.6
Ting, A.Y.7
-
33
-
-
84959457267
-
The Atg17-Atg31-Atg29 Complex Coordinates with Atg11 to Recruit the Vam7 SNA RE and Mediate Autophagosome-Vacuole Fusion
-
Liu, X., K. Mao, A.Y. Yu, A. Omairi-Nasser, J. Austin II, B.S. Glick, C.K. Yip, and D.J. Klionsky. 2016. The Atg17-Atg31-Atg29 Complex Coordinates with Atg11 to Recruit the Vam7 SNA RE and Mediate Autophagosome-Vacuole Fusion. Curr. Biol. 26:150-160. https ://doi. org /10. 1016 /j. cub. 2015. 11. 054
-
(2016)
Curr. Biol
, vol.26
, pp. 150-160
-
-
Liu, X.1
Mao, K.2
Yu, A.Y.3
Omairi-Nasser, A.4
Austin, J.5
Glick, B.S.6
Yip, C.K.7
Klionsky, D.J.8
-
34
-
-
84923830331
-
The Habc domain of the SNA RE Vam3 interacts with the HOPS tethering complex to facilitate vacuole fusion
-
Lürick, A., A. Kuhlee, C. Bröcker, D. Kümmel, S. Raunser, and C. Ungermann. 2015. The Habc domain of the SNA RE Vam3 interacts with the HOPS tethering complex to facilitate vacuole fusion. J. Biol. Chem. 290:5405-5413. https ://doi. org /10. 1074 /jbc. M114. 631465
-
(2015)
J. Biol. Chem
, vol.290
, pp. 5405-5413
-
-
Lürick, A.1
Kuhlee, A.2
Bröcker, C.3
Kümmel, D.4
Raunser, S.5
Ungermann, C.6
-
35
-
-
84907599058
-
TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition
-
Mandell, M.A., A. Jain, J. Arko-Mensah, S. Chauhan, T. Kimura, C. Dinkins, G. Silvestri, J. Münch, F. Kirchhoff, A. Simonsen, et al. 2014. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell. 30:394-409. https ://doi. org /10. 1016 /j. devcel. 2014. 06. 013
-
(2014)
Dev. Cell
, vol.30
, pp. 394-409
-
-
Mandell, M.A.1
Jain, A.2
Arko-Mensah, J.3
Chauhan, S.4
Kimura, T.5
Dinkins, C.6
Silvestri, G.7
Münch, J.8
Kirchhoff, F.9
Simonsen, A.10
-
36
-
-
84885576570
-
The ubiquitin ligase parkin mediates resistance to intracellular pathogens
-
Manzanillo, P.S., J.S. Ayres, R.O. Watson, A.C. Collins, G. Souza, C.S. Rae, D.S. Schneider, K. Nakamura, M.U. Shiloh, and J.S. Cox. 2013. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature. 501:512-516. https ://doi. org /10. 1038 /nature12566
-
(2013)
Nature
, vol.501
, pp. 512-516
-
-
Manzanillo, P.S.1
Ayres, J.S.2
Watson, R.O.3
Collins, A.C.4
Souza, G.5
Rae, C.S.6
Schneider, D.S.7
Nakamura, K.8
Shiloh, M.U.9
Cox, J.S.10
-
37
-
-
84920448565
-
PLE KHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GAB ARAP proteins
-
McEwan, D.G., D. Popovic, A. Gubas, S. Terawaki, H. Suzuki, D. Stadel, F.P. Coxon, D. Miranda de Stegmann, S. Bhogaraju, K. Maddi, et al. 2015. PLE KHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GAB ARAP proteins. Mol. Cell. 57:39-54. https ://doi. org /10. 1016 /j. molcel. 2014. 11. 006
-
(2015)
Mol. Cell
, vol.57
, pp. 39-54
-
-
McEwan, D.G.1
Popovic, D.2
Gubas, A.3
Terawaki, S.4
Suzuki, H.5
Stadel, D.6
Coxon, F.P.7
Miranda de Stegmann, D.8
Bhogaraju, S.9
Maddi, K.10
-
38
-
-
84884212360
-
Active Microscope Stabilization in Three Dimensions Using Image Correlation
-
McGorty, R., D. Kamiyama, and B. Huang. 2013. Active Microscope Stabilization in Three Dimensions Using Image Correlation. Opt. Nanoscopy. 2:3. https ://doi. org /10. 1186 /2192-2853-2-3
-
(2013)
Opt. Nanoscopy
, vol.2
, pp. 3
-
-
McGorty, R.1
Kamiyama, D.2
Huang, B.3
-
39
-
-
84980027958
-
Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system
-
McLelland, G.L., S.A. Lee, H.M. McBride, and E.A. Fon. 2016. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol. 214:275-291. https ://doi. org /10. 1083 /jcb. 201603105
-
(2016)
J. Cell Biol
, vol.214
, pp. 275-291
-
-
McLelland, G.L.1
Lee, S.A.2
McBride, H.M.3
Fon, E.A.4
-
40
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima, N., B. Levine, A.M. Cuervo, and D.J. Klionsky. 2008. Autophagy fights disease through cellular self-digestion. Nature. 451:1069-1075. https ://doi. org /10. 1038 /nature06639
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
41
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima, N., T. Yoshimori, and Y. Ohsumi. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27:107-132. https ://doi. org /10. 1146 /annurev-cellbio-092910-154005
-
(2011)
Annu. Rev. Cell Dev. Biol
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
42
-
-
85009198548
-
Atg8 family LC3/GAB ARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/ Parkin mitophagy and starvation
-
Nguyen, T.N., B.S. Padman, J. Usher, V. Oorschot, G. Ramm, and M. Lazarou. 2016. Atg8 family LC3/GAB ARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/ Parkin mitophagy and starvation. J. Cell Biol. 215:857-874
-
(2016)
J. Cell Biol
, vol.215
, pp. 857-874
-
-
Nguyen, T.N.1
Padman, B.S.2
Usher, J.3
Oorschot, V.4
Ramm, G.5
Lazarou, M.6
-
43
-
-
70349687405
-
Discovery of Atg5/Atg7-independent alternative macroautophagy
-
Nishida, Y., S. Arakawa, K. Fujitani, H. Yamaguchi, T. Mizuta, T. Kanaseki, M. Komatsu, K. Otsu, Y. Tsujimoto, and S. Shimizu. 2009. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 461:654-658. https ://doi. org /10. 1038 /nature08455
-
(2009)
Nature
, vol.461
, pp. 654-658
-
-
Nishida, Y.1
Arakawa, S.2
Fujitani, K.3
Yamaguchi, H.4
Mizuta, T.5
Kanaseki, T.6
Komatsu, M.7
Otsu, K.8
Tsujimoto, Y.9
Shimizu, S.10
-
44
-
-
77950484269
-
Atg8-family interacting motif crucial for selective autophagy
-
Noda, N.N., Y. Ohsumi, and F. Inagaki. 2010. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584:1379-1385. https ://doi. org /10. 1016 /j. febslet. 2010. 01. 018
-
(2010)
FEBS Lett
, vol.584
, pp. 1379-1385
-
-
Noda, N.N.1
Ohsumi, Y.2
Inagaki, F.3
-
45
-
-
34548259958
-
p62/SQS TM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv, S., T.H. Clausen, T. Lamark, A. Brech, J.A. Bruun, H. Outzen, A. Øvervatn, G. Bjørkøy, and T. Johansen. 2007. p62/SQS TM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-24145. https ://doi. org /10. 1074 /jbc. M702824200
-
(2007)
J. Biol. Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Øvervatn, A.7
Bjørkøy, G.8
Johansen, T.9
-
46
-
-
77949997805
-
Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties
-
Ponpuak, M., A.S. Davis, E.A. Roberts, M.A. Delgado, C. Dinkins, Z. Zhao, H.W. Virgin IV, G.B. Kyei, T. Johansen, I. Vergne, and V. Deretic. 2010. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity. 32:329-341. https ://doi. org /10. 1016 /j. immuni. 2010. 02. 009
-
(2010)
Immunity
, vol.32
, pp. 329-341
-
-
Ponpuak, M.1
Davis, A.S.2
Roberts, E.A.3
Delgado, M.A.4
Dinkins, C.5
Zhao, Z.6
Virgin, H.W.7
Kyei, G.B.8
Johansen, T.9
Vergne, I.10
Deretic, V.11
-
47
-
-
84964292879
-
Analysis of the native conformation of the LIR/AIM motif in the Atg8/LC3/GAB ARAP-binding proteins
-
Popelka, H., and D.J. Klionsky. 2015. Analysis of the native conformation of the LIR/AIM motif in the Atg8/LC3/GAB ARAP-binding proteins. Autophagy. 11:2153-2159. https ://doi. org /10. 1080 /15548627. 2015. 1111503
-
(2015)
Autophagy
, vol.11
, pp. 2153-2159
-
-
Popelka, H.1
Klionsky, D.J.2
-
48
-
-
79551546749
-
Autophagic substrate clearance requires activity of the syntaxin-5 SNA RE complex
-
Renna, M., C. Schaffner, A.R. Winslow, F.M. Menzies, A.A. Peden, R.A. Floto, and D.C. Rubinsztein. 2011. Autophagic substrate clearance requires activity of the syntaxin-5 SNA RE complex. J. Cell Sci. 124:469-482. https ://doi. org /10. 1242 /jcs. 076489
-
(2011)
J. Cell Sci
, vol.124
, pp. 469-482
-
-
Renna, M.1
Schaffner, C.2
Winslow, A.R.3
Menzies, F.M.4
Peden, A.A.5
Floto, R.A.6
Rubinsztein, D.C.7
-
49
-
-
84874956967
-
Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging
-
Rhee, H.W., P. Zou, N.D. Udeshi, J.D. Martell, V.K. Mootha, S.A. Carr, and A.Y. Ting. 2013. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science. 339:1328-1331. https :// doi. org /10. 1126 /science. 1230593
-
(2013)
Science
, vol.339
, pp. 1328-1331
-
-
Rhee, H.W.1
Zou, P.2
Udeshi, N.D.3
Martell, J.D.4
Mootha, V.K.5
Carr, S.A.6
Ting, A.Y.7
-
50
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
Rogov, V., V. Dötsch, T. Johansen, and V. Kirkin. 2014. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell. 53:167-178. https ://doi. org /10. 1016 /j. molcel. 2013. 12. 014
-
(2014)
Mol. Cell
, vol.53
, pp. 167-178
-
-
Rogov, V.1
Dötsch, V.2
Johansen, T.3
Kirkin, V.4
-
51
-
-
37549043217
-
Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
-
Sanjuan, M.A., C.P. Dillon, S.W. Tait, S. Moshiach, F. Dorsey, S. Connell, M. Komatsu, K. Tanaka, J.L. Cleveland, S. Withoff, and D.R. Green. 2007. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 450:1253-1257. https ://doi. org /10. 1038 /nature06421
-
(2007)
Nature
, vol.450
, pp. 1253-1257
-
-
Sanjuan, M.A.1
Dillon, C.P.2
Tait, S.W.3
Moshiach, S.4
Dorsey, F.5
Connell, S.6
Komatsu, M.7
Tanaka, K.8
Cleveland, J.L.9
Withoff, S.10
Green, D.R.11
-
52
-
-
84873709314
-
Identification of a candidate therapeutic autophagy-inducing peptide
-
Shoji-Kawata, S., R. Sumpter, M. Leveno, G.R. Campbell, Z. Zou, L. Kinch, A.D. Wilkins, Q. Sun, K. Pallauf, D. MacDuff, et al. 2013. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 494:201-206. https ://doi. org /10. 1038 /nature11866
-
(2013)
Nature
, vol.494
, pp. 201-206
-
-
Shoji-Kawata, S.1
Sumpter, R.2
Leveno, M.3
Campbell, G.R.4
Zou, Z.5
Kinch, L.6
Wilkins, A.D.7
Sun, Q.8
Pallauf, K.9
MacDuff, D.10
-
53
-
-
33748506089
-
Human IRGM induces autophagy to eliminate intracellular mycobacteria
-
Singh, S.B., A.S. Davis, G.A. Taylor, and V. Deretic. 2006. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science. 313:1438-1441. https ://doi. org /10. 1126 /science. 1129577
-
(2006)
Science
, vol.313
, pp. 1438-1441
-
-
Singh, S.B.1
Davis, A.S.2
Taylor, G.A.3
Deretic, V.4
-
54
-
-
78649833818
-
Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria
-
Singh, S.B., W. Ornatowski, I. Vergne, J. Naylor, M. Delgado, E. Roberts, M. Ponpuak, S. Master, M. Pilli, E. White, et al. 2010. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat. Cell Biol. 12:1154-1165. https ://doi. org /10. 1038 / ncb2119
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 1154-1165
-
-
Singh, S.B.1
Ornatowski, W.2
Vergne, I.3
Naylor, J.4
Delgado, M.5
Roberts, E.6
Ponpuak, M.7
Master, S.8
Pilli, M.9
White, E.10
-
55
-
-
77952216273
-
Fast, single-molecule localization that achieves theoretically minimum uncertainty
-
Smith, C.S., N. Joseph, B. Rieger, and K.A. Lidke. 2010. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods. 7:373-375. https ://doi. org /10. 1038 /nmeth. 1449
-
(2010)
Nat. Methods
, vol.7
, pp. 373-375
-
-
Smith, C.S.1
Joseph, N.2
Rieger, B.3
Lidke, K.A.4
-
56
-
-
84878757739
-
Tethering complexes in the endocytic pathway: COR VET and HOPS
-
Solinger, J.A., and A. Spang. 2013. Tethering complexes in the endocytic pathway: COR VET and HOPS. FEBS J. 280:2743-2757. https ://doi. org /10. 1111 /febs. 12151
-
(2013)
FEBS J
, vol.280
, pp. 2743-2757
-
-
Solinger, J.A.1
Spang, A.2
-
57
-
-
0032545419
-
Three novel proteins of the syntaxin/SNAP-25 family
-
Steegmaier, M., B. Yang, J.S. Yoo, B. Huang, M. Shen, S. Yu, Y. Luo, and R.H. Scheller. 1998. Three novel proteins of the syntaxin/SNAP-25 family. J. Biol. Chem. 273:34171-34179. https ://doi. org /10. 1074 /jbc. 273. 51. 34171
-
(1998)
J. Biol. Chem
, vol.273
, pp. 34171-34179
-
-
Steegmaier, M.1
Yang, B.2
Yoo, J.S.3
Huang, B.4
Shen, M.5
Yu, S.6
Luo, Y.7
Scheller, R.H.8
-
58
-
-
0033840553
-
Syntaxin 17 is abundant in steroidogenic cells and implicated in smooth endoplasmic reticulum membrane dynamics
-
Steegmaier, M., V. Oorschot, J. Klumperman, and R.H. Scheller. 2000. Syntaxin 17 is abundant in steroidogenic cells and implicated in smooth endoplasmic reticulum membrane dynamics. Mol. Biol. Cell. 11:2719-2731. https ://doi. org /10. 1091 /mbc. 11. 8. 2719
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2719-2731
-
-
Steegmaier, M.1
Oorschot, V.2
Klumperman, J.3
Scheller, R.H.4
-
59
-
-
84878615771
-
Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila
-
Takáts, S., P. Nagy, á. Varga, K. Pircs, M. Kárpáti, K. Varga, A.L. Kovács, K. Hegedus, and G. Juhász. 2013. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201:531-539. https ://doi. org /10. 1083 /jcb. 201211160
-
(2013)
J. Cell Biol
, vol.201
, pp. 531-539
-
-
Takáts, S.1
Nagy, P.2
Varga, Á.3
Pircs, K.4
Kárpáti, M.5
Varga, K.6
Kovács, A.L.7
Hegedus, K.8
Juhász, G.9
-
60
-
-
84901308155
-
Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila
-
Takáts, S., K. Pircs, P. Nagy, á. Varga, M. Kárpáti, K. Hegedus, H. Kramer, A.L. Kovács, M. Sass, and G. Juhász. 2014. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol. Biol. Cell. 25:1338-1354. https ://doi. org /10. 1091 /mbc. E13-08-0449
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1338-1354
-
-
Takáts, S.1
Pircs, K.2
Nagy, P.3
Varga, Á.4
Kárpáti, M.5
Hegedus, K.6
Kramer, H.7
Kovács, A.L.8
Sass, M.9
Juhász, G.10
-
61
-
-
84857071710
-
Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
-
Thurston, T.L., M.P. Wandel, N. von Muhlinen, A. Foeglein, and F. Randow. 2012. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 482:414-418. https ://doi. org /10. 1038 /nature10744
-
(2012)
Nature
, vol.482
, pp. 414-418
-
-
Thurston, T.L.1
Wandel, M.P.2
von Muhlinen, N.3
Foeglein, A.4
Randow, F.5
-
62
-
-
84992154479
-
The ATG conjugation systems are important for degradation of the inner autophagosomal membrane
-
Tsuboyama, K., I. Koyama-Honda, Y. Sakamaki, M. Koike, H. Morishita, and N. Mizushima. 2016. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science. 354:1036-1041. https ://doi. org /10. 1126 /science. aaf6136
-
(2016)
Science
, vol.354
, pp. 1036-1041
-
-
Tsuboyama, K.1
Koyama-Honda, I.2
Sakamaki, Y.3
Koike, M.4
Morishita, H.5
Mizushima, N.6
-
63
-
-
84928905802
-
Sequential superresolution imaging of multiple targets using a single fluorophore
-
Valley, C.C., S. Liu, D.S. Lidke, and K.A. Lidke. 2015. Sequential superresolution imaging of multiple targets using a single fluorophore. PLoS One. 10:e0123941. https ://doi. org /10. 1371 /journal. pone. 0123941
-
(2015)
PLoS One
, vol.10
-
-
Valley, C.C.1
Liu, S.2
Lidke, D.S.3
Lidke, K.A.4
-
64
-
-
84992453286
-
The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes
-
Wang, Z., G. Miao, X. Xue, X. Guo, C. Yuan, Z. Wang, G. Zhang, Y. Chen, D. Feng, J. Hu, and H. Zhang. 2016. The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes. Mol. Cell. 63:781-795. https ://doi. org /10. 1016 /j. molcel. 2016. 08. 021
-
(2016)
Mol. Cell
, vol.63
, pp. 781-795
-
-
Wang, Z.1
Miao, G.2
Xue, X.3
Guo, X.4
Yuan, C.5
Wang, Z.6
Zhang, G.7
Chen, Y.8
Feng, D.9
Hu, J.10
Zhang, H.11
-
65
-
-
85009178435
-
Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor
-
Wei, Y., W.C. Chiang, R. Sumpter Jr., P. Mishra, and B. Levine. 2017. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 168:224-238
-
(2017)
Cell
, vol.168
, pp. 224-238
-
-
Wei, Y.1
Chiang, W.C.2
Sumpter, R.3
Mishra, P.4
Levine, B.5
-
66
-
-
77953122645
-
LC3 and GATE-16/GAB ARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg, H., E. Shvets, T. Shpilka, F. Shimron, V. Shinder, and Z. Elazar. 2010. LC3 and GATE-16/GAB ARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29:1792-1802. https ://doi. org /10. 1038 /emboj. 2010. 74
-
(2010)
EMBO J
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
67
-
-
84969213492
-
Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
-
Wellcome Trust Case Control Consortium. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 447:661-678
-
(2007)
Nature
, vol.447
, pp. 661-678
-
-
-
68
-
-
84974602682
-
Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway
-
Wijdeven, R.H., H. Janssen, L. Nahidiazar, L. Janssen, K. Jalink, I. Berlin, and J. Neefjes. 2016. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat. Commun. 7:11808. https ://doi. org /10. 1038 /ncomms11808
-
(2016)
Nat. Commun
, vol.7
, pp. 11808
-
-
Wijdeven, R.H.1
Janssen, H.2
Nahidiazar, L.3
Janssen, L.4
Jalink, K.5
Berlin, I.6
Neefjes, J.7
-
69
-
-
47549092694
-
Atg8 controls phagophore expansion during autophagosome formation
-
Xie, Z., U. Nair, and D.J. Klionsky. 2008. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell. 19:3290-3298. https ://doi. org /10. 1091 /mbc. E07-12-1292
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3290-3298
-
-
Xie, Z.1
Nair, U.2
Klionsky, D.J.3
-
70
-
-
77953608974
-
HOPS prevents the disassembly of trans-SNA RE complexes by Sec17p/Sec18p during membrane fusion
-
Xu, H., Y. Jun, J. Thompson, J. Yates, and W. Wickner. 2010. HOPS prevents the disassembly of trans-SNA RE complexes by Sec17p/Sec18p during membrane fusion. EMBO J. 29:1948-1960. https ://doi. org /10. 1038 / emboj. 2010. 97
-
(2010)
EMBO J
, vol.29
, pp. 1948-1960
-
-
Xu, H.1
Jun, Y.2
Thompson, J.3
Yates, J.4
Wickner, W.5
-
71
-
-
85008889019
-
Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy
-
Yamashita, S.I., X. Jin, K. Furukawa, M. Hamasaki, A. Nezu, H. Otera, T. Saigusa, T. Yoshimori, Y. Sakai, K. Mihara, and T. Kanki. 2016. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J. Cell Biol. 215:649-665. https ://doi. org /10. 1083 /jcb. 201605093
-
(2016)
J. Cell Biol
, vol.215
, pp. 649-665
-
-
Yamashita, S.I.1
Jin, X.2
Furukawa, K.3
Hamasaki, M.4
Nezu, A.5
Otera, H.6
Saigusa, T.7
Yoshimori, T.8
Sakai, Y.9
Mihara, K.10
Kanki, T.11
-
72
-
-
84955292894
-
Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion
-
Zhang, M., S.J. Kenny, L. Ge, K. Xu, and R. Schekman. 2015. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife. 4:e11205. https ://doi. org /10. 7554 /eLife. 11205
-
(2015)
eLife
, vol.4
-
-
Zhang, M.1
Kenny, S.J.2
Ge, L.3
Xu, K.4
Schekman, R.5
|