메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 5899-5907

Representation Learning by Learning to Count

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING;

EID: 85041930018     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.628     Document Type: Conference Paper
Times cited : (432)

References (45)
  • 4
    • 51949104316 scopus 로고    scopus 로고
    • Privacy preserving crowd monitoring: Counting people without people models or tracking
    • A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy preserving crowd monitoring: Counting people without people models or tracking. In CVPR, 2008.
    • (2008) CVPR
    • Chan, A.B.1    Liang, Z.-S.J.2    Vasconcelos, N.3
  • 5
    • 77953177412 scopus 로고    scopus 로고
    • Bayesian poisson regression for crowd counting
    • A. B. Chan and N. Vasconcelos. Bayesian poisson regression for crowd counting. In ICCV, 2009.
    • (2009) ICCV
    • Chan, A.B.1    Vasconcelos, N.2
  • 7
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face
    • S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face. In CVPR, 2005.
    • (2005) CVPR
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 8
    • 85083954208 scopus 로고    scopus 로고
    • Generative modeling of convolutional neural networks
    • J. Dai. Generative modeling of convolutional neural networks. In ICLR, 2015.
    • (2015) ICLR
    • Dai, J.1
  • 9
    • 84973916088 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by context prediction
    • C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015.
    • (2015) ICCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 11
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • R. Girshick. Fast r-cnn. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313 (5786): 504507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 84941194361 scopus 로고    scopus 로고
    • Detecting humans in dense crowds using locally-consistent scale prior and global occlusion reasoning
    • H. Idrees, K. Soomro, and M. Shah. Detecting humans in dense crowds using locally-consistent scale prior and global occlusion reasoning. PAMI, 2015.
    • (2015) PAMI
    • Idrees, H.1    Soomro, K.2    Shah, M.3
  • 17
    • 84973897623 scopus 로고    scopus 로고
    • Learning image representations tied to ego-motion
    • D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. In ICCV, 2015.
    • (2015) ICCV
    • Jayaraman, D.1    Grauman, K.2
  • 19
    • 85083952350 scopus 로고    scopus 로고
    • Datadependent initializations of convolutional neural networks
    • P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Datadependent initializations of convolutional neural networks. In ICLR, 2016.
    • (2016) ICLR
    • Krähenbühl, P.1    Doersch, C.2    Donahue, J.3    Darrell, T.4
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012.
    • (2012) NIPS.
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 21
    • 85030792287 scopus 로고    scopus 로고
    • Learning representations for automatic colorization
    • G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization. In ECCV, 2016.
    • (2016) ECCV
    • Larsson, G.1    Maire, M.2    Shakhnarovich, G.3
  • 22
    • 85041897195 scopus 로고    scopus 로고
    • Colorization as a proxy task for visual understanding
    • G. Larsson, M. Maire, and G. Shakhnarovich. Colorization as a proxy task for visual understanding. In CVPR, 2017.
    • (2017) CVPR
    • Larsson, G.1    Maire, M.2    Shakhnarovich, G.3
  • 23
    • 85162384490 scopus 로고    scopus 로고
    • Learning to count objects in images
    • V. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, 2010.
    • (2010) NIPS
    • Lempitsky, V.1    Zisserman, A.2
  • 24
    • 84959210421 scopus 로고    scopus 로고
    • Understanding image representations by measuring their equivariance and equivalence
    • K. Lenc and A. Vedaldi. Understanding image representations by measuring their equivariance and equivalence. In CVPR, 2015.
    • (2015) CVPR
    • Lenc, K.1    Vedaldi, A.2
  • 26
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 27
    • 84990049823 scopus 로고    scopus 로고
    • Shuffle and learn: Unsupervised learning using temporal order verification
    • I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: Unsupervised learning using temporal order verification. In ECCV, 2016.
    • (2016) ECCV
    • Misra, I.1    Zitnick, C.L.2    Hebert, M.3
  • 28
    • 85041915299 scopus 로고    scopus 로고
    • A large contextual dataset for classification, detection and counting of cars with deep learning
    • T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye. A large contextual dataset for classification, detection and counting of cars with deep learning. In ECCV, 2016.
    • (2016) ECCV
    • Mundhenk, T.N.1    Konjevod, G.2    Sakla, W.A.3    Boakye, K.4
  • 29
    • 84986287885 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations by solving jigsaw puzzles
    • M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV, 2016.
    • (2016) ECCV
    • Noroozi, M.1    Favaro, P.2
  • 34
    • 84990042430 scopus 로고    scopus 로고
    • The curious robot: Learning visual representations via physical interactions
    • L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The curious robot: Learning visual representations via physical interactions. In ECCV, 2016.
    • (2016) ECCV
    • Pinto, L.1    Gandhi, D.2    Han, Y.3    Park, Y.-L.4    Gupta, A.5
  • 35
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 39
    • 84959200559 scopus 로고    scopus 로고
    • Deeply learned attributes for crowded scene understanding
    • J. Shao, K. Kang, C. C. Loy, and X. Wang. Deeply learned attributes for crowded scene understanding. In CVPR, 2015.
    • (2015) CVPR
    • Shao, J.1    Kang, K.2    Loy, C.C.3    Wang, X.4
  • 40
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2006.
    • (2006) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 41
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015.
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2
  • 42
    • 84959214343 scopus 로고    scopus 로고
    • Cross-scene crowd counting via deep convolutional neural networks
    • C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Zhang, C.1    Li, H.2    Wang, X.3    Yang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.