-
4
-
-
51949104316
-
Privacy preserving crowd monitoring: Counting people without people models or tracking
-
A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy preserving crowd monitoring: Counting people without people models or tracking. In CVPR, 2008.
-
(2008)
CVPR
-
-
Chan, A.B.1
Liang, Z.-S.J.2
Vasconcelos, N.3
-
5
-
-
77953177412
-
Bayesian poisson regression for crowd counting
-
A. B. Chan and N. Vasconcelos. Bayesian poisson regression for crowd counting. In ICCV, 2009.
-
(2009)
ICCV
-
-
Chan, A.B.1
Vasconcelos, N.2
-
6
-
-
85021675028
-
-
arXiv preprint arXiv: 1604. 03505v2
-
P. Chattopadhyay, R. Vedantam, R. R. Selvaraju, D. Batra, and D. Parikh. Counting everyday objects in everyday scenes. ArXiv preprint arXiv: 1604. 03505v2, 2016.
-
(2016)
Counting Everyday Objects in Everyday Scenes
-
-
Chattopadhyay, P.1
Vedantam, R.2
Selvaraju, R.R.3
Batra, D.4
Parikh, D.5
-
7
-
-
24644436425
-
Learning a similarity metric discriminatively, with application to face
-
S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face. In CVPR, 2005.
-
(2005)
CVPR
-
-
Chopra, S.1
Hadsell, R.2
LeCun, Y.3
-
8
-
-
85083954208
-
Generative modeling of convolutional neural networks
-
J. Dai. Generative modeling of convolutional neural networks. In ICLR, 2015.
-
(2015)
ICLR
-
-
Dai, J.1
-
9
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015.
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
11
-
-
85029359197
-
Fast r-cnn
-
R. Girshick. Fast r-cnn. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
13
-
-
84937849144
-
Generative adversarial networks
-
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.J.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
14
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313 (5786): 504507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
15
-
-
84941194361
-
Detecting humans in dense crowds using locally-consistent scale prior and global occlusion reasoning
-
H. Idrees, K. Soomro, and M. Shah. Detecting humans in dense crowds using locally-consistent scale prior and global occlusion reasoning. PAMI, 2015.
-
(2015)
PAMI
-
-
Idrees, H.1
Soomro, K.2
Shah, M.3
-
17
-
-
84973897623
-
Learning image representations tied to ego-motion
-
D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. In ICCV, 2015.
-
(2015)
ICCV
-
-
Jayaraman, D.1
Grauman, K.2
-
18
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM-MM, 2014.
-
(2014)
ACM-MM
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
19
-
-
85083952350
-
Datadependent initializations of convolutional neural networks
-
P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Datadependent initializations of convolutional neural networks. In ICLR, 2016.
-
(2016)
ICLR
-
-
Krähenbühl, P.1
Doersch, C.2
Donahue, J.3
Darrell, T.4
-
20
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012.
-
(2012)
NIPS.
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
21
-
-
85030792287
-
Learning representations for automatic colorization
-
G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization. In ECCV, 2016.
-
(2016)
ECCV
-
-
Larsson, G.1
Maire, M.2
Shakhnarovich, G.3
-
22
-
-
85041897195
-
Colorization as a proxy task for visual understanding
-
G. Larsson, M. Maire, and G. Shakhnarovich. Colorization as a proxy task for visual understanding. In CVPR, 2017.
-
(2017)
CVPR
-
-
Larsson, G.1
Maire, M.2
Shakhnarovich, G.3
-
23
-
-
85162384490
-
Learning to count objects in images
-
V. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, 2010.
-
(2010)
NIPS
-
-
Lempitsky, V.1
Zisserman, A.2
-
24
-
-
84959210421
-
Understanding image representations by measuring their equivariance and equivalence
-
K. Lenc and A. Vedaldi. Understanding image representations by measuring their equivariance and equivalence. In CVPR, 2015.
-
(2015)
CVPR
-
-
Lenc, K.1
Vedaldi, A.2
-
25
-
-
84937834115
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollr, P.7
Zitnick, C.L.8
-
26
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
27
-
-
84990049823
-
Shuffle and learn: Unsupervised learning using temporal order verification
-
I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: Unsupervised learning using temporal order verification. In ECCV, 2016.
-
(2016)
ECCV
-
-
Misra, I.1
Zitnick, C.L.2
Hebert, M.3
-
28
-
-
85041915299
-
A large contextual dataset for classification, detection and counting of cars with deep learning
-
T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye. A large contextual dataset for classification, detection and counting of cars with deep learning. In ECCV, 2016.
-
(2016)
ECCV
-
-
Mundhenk, T.N.1
Konjevod, G.2
Sakla, W.A.3
Boakye, K.4
-
29
-
-
84986287885
-
Unsupervised learning of visual representations by solving jigsaw puzzles
-
M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV, 2016.
-
(2016)
ECCV
-
-
Noroozi, M.1
Favaro, P.2
-
32
-
-
85041899945
-
-
arXiv preprint arXiv: 1612. 06370
-
D. Pathak, R. Girshick, P. Dollr, T. Darrell, and B. Hariharan. Learning features by watching objects move. ArXiv preprint arXiv: 1612. 06370, 2016.
-
(2016)
Learning Features by Watching Objects Move
-
-
Pathak, D.1
Girshick, R.2
Dollr, P.3
Darrell, T.4
Hariharan, B.5
-
33
-
-
84986294165
-
Context encoders: Feature learning by inpainting
-
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016.
-
(2016)
CVPR
-
-
Pathak, D.1
Krahenbuhl, P.2
Donahue, J.3
Darrell, T.4
Efros, A.A.5
-
34
-
-
84990042430
-
The curious robot: Learning visual representations via physical interactions
-
L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The curious robot: Learning visual representations via physical interactions. In ECCV, 2016.
-
(2016)
ECCV
-
-
Pinto, L.1
Gandhi, D.2
Han, Y.3
Park, Y.-L.4
Gupta, A.5
-
35
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
38
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
39
-
-
84959200559
-
Deeply learned attributes for crowded scene understanding
-
J. Shao, K. Kang, C. C. Loy, and X. Wang. Deeply learned attributes for crowded scene understanding. In CVPR, 2015.
-
(2015)
CVPR
-
-
Shao, J.1
Kang, K.2
Loy, C.C.3
Wang, X.4
-
40
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2006.
-
(2006)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
41
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015.
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
42
-
-
84959214343
-
Cross-scene crowd counting via deep convolutional neural networks
-
C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zhang, C.1
Li, H.2
Wang, X.3
Yang, X.4
-
45
-
-
85041900342
-
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. In NIPS, 2014.
-
(2014)
NIPS
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|