메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 5716-5726

Unified Deep Supervised Domain Adaptation and Generalization

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; SEMANTICS;

EID: 85041925465     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.609     Document Type: Conference Paper
Times cited : (932)

References (67)
  • 2
    • 84898798212 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by domain invariant projection
    • M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann. Unsupervised domain adaptation by domain invariant projection. In IEEE ICCV, pages 769-776, 2013.
    • (2013) IEEE ICCV , pp. 769-776
    • Baktashmotlagh, M.1    Harandi, M.T.2    Lovell, B.C.3    Salzmann, M.4
  • 4
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
    • A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach. In Advances in Neural Information Processing Systems, pages 181-189, 2010.
    • (2010) Advances in Neural Information Processing Systems , pp. 181-189
    • Bergamo, A.1    Torresani, L.2
  • 5
  • 7
    • 84906493570 scopus 로고    scopus 로고
    • Recognizing RGB images by learning from RGB-D data
    • June
    • L. Chen, W. Li, and D. Xu. Recognizing RGB images by learning from RGB-D data. In CVPR, pages 1418-1425, June 2014.
    • (2014) CVPR , pp. 1418-1425
    • Chen, L.1    Li, W.2    Xu, D.3
  • 13
    • 85012921473 scopus 로고    scopus 로고
    • Robust transfer metric learning for image classification
    • Z. Ding and Y. Fu. Robust transfer metric learning for image classification. IEEE Transactions on Image Processing, 26 (2): 660-670, 2017.
    • (2017) IEEE Transactions on Image Processing , vol.26 , Issue.2 , pp. 660-670
    • Ding, Z.1    Fu, Y.2
  • 17
    • 84898795612 scopus 로고    scopus 로고
    • Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias
    • C. Fang, Y. Xu, and D. N. Rockmore. Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias. In International Conference on Computer Vision, 2013.
    • (2013) International Conference on Computer Vision
    • Fang, C.1    Xu, Y.2    Rockmore, D.N.3
  • 18
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer vision and Image understanding, 106 (1): 59-70, 2007.
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 19
    • 84898798531 scopus 로고    scopus 로고
    • Unsupervised visual domain adaptation using subspace alignment
    • B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In IEEE ICCV, pages 2960-2967, 2013.
    • (2013) IEEE ICCV , pp. 2960-2967
    • Fernando, B.1    Habrard, A.2    Sebban, M.3    Tuytelaars, T.4
  • 20
    • 84940386535 scopus 로고    scopus 로고
    • Joint crossdomain classification and subspace learning for unsupervised adaptation
    • B. Fernando, T. Tommasi, and T. Tuytelaarsc. Joint crossdomain classification and subspace learning for unsupervised adaptation. Pattern Recogition Letters, 2015.
    • (2015) Pattern Recogition Letters
    • Fernando, B.1    Tommasi, T.2    Tuytelaarsc, T.3
  • 27
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In IEEE ICCV, pages 999-1006, 2011.
    • (2011) IEEE ICCV , pp. 999-1006
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 29
    • 84867122134 scopus 로고    scopus 로고
    • Cross language text classification via subspace co-regularized multi-view learning
    • Edinburgh, Scotland, UK, June 26-July 1, 2012
    • Y. Guo and M. Xiao. Cross language text classification via subspace co-regularized multi-view learning. In Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26-July 1, 2012, 2012.
    • (2012) Proceedings of the 29th International Conference on Machine Learning, ICML 2012
    • Guo, Y.1    Xiao, M.2
  • 35
  • 36
    • 84896724050 scopus 로고    scopus 로고
    • Learning using privileged information: SVM+ and weighted SVM
    • M. Lapin, M. Hein, and B. Schiele. Learning using privileged information: SVM+ and weighted SVM. Neural Networks, 53: 95-108, 2014.
    • (2014) Neural Networks , vol.53 , pp. 95-108
    • Lapin, M.1    Hein, M.2    Schiele, B.3
  • 37
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 39
    • 84969549144 scopus 로고    scopus 로고
    • Learning transferable features with deep adaptation networks
    • M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with deep adaptation networks. In ICML, pages 97-105, 2015.
    • (2015) ICML , pp. 97-105
    • Long, M.1    Cao, Y.2    Wang, J.3    Jordan, M.I.4
  • 42
    • 84990030052 scopus 로고    scopus 로고
    • Information bottleneck domain adaptation with privileged information for visual recognition
    • Springer
    • S. Motiian and G. Doretto. Information bottleneck domain adaptation with privileged information for visual recognition. In European Conference on Computer Vision, pages 630-647. Springer, 2016.
    • (2016) European Conference on Computer Vision , pp. 630-647
    • Motiian, S.1    Doretto, G.2
  • 44
    • 84897517066 scopus 로고    scopus 로고
    • Domain generalization via invariant feature representation
    • K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization via invariant feature representation. In ICML (1), pages 10-18, 2013.
    • (2013) ICML (1) , pp. 10-18
    • Muandet, K.1    Balduzzi, D.2    Schölkopf, B.3
  • 47
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. IEEE TNN, 22 (2): 199-210, 2011.
    • (2011) IEEE TNN , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.T.3    Yang, Q.4
  • 53
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, pages 213-226, 2010.
    • (2010) ECCV , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 54
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90 (2): 227-244, 2000.
    • (2000) Journal of Statistical Planning and Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 56
    • 85006058961 scopus 로고    scopus 로고
    • Deep coral: Correlation alignment for deep domain adaptation
    • Springer
    • B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In Computer Vision-ECCV 2016 Workshops, pages 443-450. Springer, 2016.
    • (2016) Computer Vision-ECCV 2016 Workshops , pp. 443-450
    • Sun, B.1    Saenko, K.2
  • 60
    • 84973897613 scopus 로고    scopus 로고
    • Simultaneous deep transfer across domains and tasks
    • E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across domains and tasks. In ICCV, 2015.
    • (2015) ICCV
    • Tzeng, E.1    Hoffman, J.2    Darrell, T.3    Saenko, K.4
  • 63
    • 84990038547 scopus 로고    scopus 로고
    • A siamese long short-term memory architecture for human reidentification
    • Springer
    • R. R. Varior, B. Shuai, J. Lu, D. Xu, and G. Wang. A siamese long short-term memory architecture for human reidentification. In European Conference on Computer Vision, pages 135-153. Springer, 2016.
    • (2016) European Conference on Computer Vision , pp. 135-153
    • Varior, R.R.1    Shuai, B.2    Lu, J.3    Xu, D.4    Wang, G.5
  • 64
    • 84908170205 scopus 로고    scopus 로고
    • Cross-domain metric learning based on information theory
    • H. Wang, W. Wang, C. Zhang, and F. Xu. Cross-domain metric learning based on information theory. In AAAI, pages 2099-2105, 2014.
    • (2014) AAAI , pp. 2099-2105
    • Wang, H.1    Wang, W.2    Zhang, C.3    Xu, F.4
  • 65
    • 84906489727 scopus 로고    scopus 로고
    • Exploiting low-rank structure from latent domains for domain generalization
    • Z. Xu, W. Li, L. Niu, and D. Xu. Exploiting low-rank structure from latent domains for domain generalization. In ECCV, pages 628-643, 2014.
    • (2014) ECCV , pp. 628-643
    • Xu, Z.1    Li, W.2    Niu, L.3    Xu, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.