-
2
-
-
84898798212
-
Unsupervised domain adaptation by domain invariant projection
-
M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann. Unsupervised domain adaptation by domain invariant projection. In IEEE ICCV, pages 769-776, 2013.
-
(2013)
IEEE ICCV
, pp. 769-776
-
-
Baktashmotlagh, M.1
Harandi, M.T.2
Lovell, B.C.3
Salzmann, M.4
-
4
-
-
85161970767
-
Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
-
A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach. In Advances in Neural Information Processing Systems, pages 181-189, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 181-189
-
-
Bergamo, A.1
Torresani, L.2
-
7
-
-
84906493570
-
Recognizing RGB images by learning from RGB-D data
-
June
-
L. Chen, W. Li, and D. Xu. Recognizing RGB images by learning from RGB-D data. In CVPR, pages 1418-1425, June 2014.
-
(2014)
CVPR
, pp. 1418-1425
-
-
Chen, L.1
Li, W.2
Xu, D.3
-
9
-
-
84959194731
-
Deep domain adaptation for describing people based on fine-grained clothing attributes
-
Q. Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, and S. Yan. Deep domain adaptation for describing people based on fine-grained clothing attributes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5315-5324, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 5315-5324
-
-
Chen, Q.1
Huang, J.2
Feris, R.3
Brown, L.M.4
Dong, J.5
Yan, S.6
-
10
-
-
77956006912
-
Exploiting hierarchical context on a large database of object categories
-
IEEE
-
M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large database of object categories. In Computer vision and pattern recognition (CVPR), 2010 IEEE conference on, pages 129-136. IEEE, 2010.
-
(2010)
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
, pp. 129-136
-
-
Choi, M.J.1
Lim, J.J.2
Torralba, A.3
Willsky, A.S.4
-
11
-
-
24644436425
-
Learning a similarity metric discriminatively, with application to face verification
-
IEEE
-
S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 539-546. IEEE, 2005.
-
(2005)
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on
, vol.1
, pp. 539-546
-
-
Chopra, S.1
Hadsell, R.2
LeCun, Y.3
-
13
-
-
85012921473
-
Robust transfer metric learning for image classification
-
Z. Ding and Y. Fu. Robust transfer metric learning for image classification. IEEE Transactions on Image Processing, 26 (2): 660-670, 2017.
-
(2017)
IEEE Transactions on Image Processing
, vol.26
, Issue.2
, pp. 660-670
-
-
Ding, Z.1
Fu, Y.2
-
14
-
-
84904482223
-
-
arXiv: 1310. 1531
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep convolutional activation feature for generic visual recognition. In arXiv: 1310. 1531, 2013.
-
(2013)
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
15
-
-
70450185098
-
Domain transfer SVM for video concept detection
-
IEEE
-
L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank. Domain transfer svm for video concept detection. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1375-1381. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
, pp. 1375-1381
-
-
Duan, L.1
Tsang, I.W.2
Xu, D.3
Maybank, S.J.4
-
16
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International journal of computer vision, 88 (2): 303-338, 2010.
-
(2010)
International Journal of Computer Vision
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
17
-
-
84898795612
-
Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias
-
C. Fang, Y. Xu, and D. N. Rockmore. Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias. In International Conference on Computer Vision, 2013.
-
(2013)
International Conference on Computer Vision
-
-
Fang, C.1
Xu, Y.2
Rockmore, D.N.3
-
18
-
-
34047174674
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer vision and Image understanding, 106 (1): 59-70, 2007.
-
(2007)
Computer Vision and Image Understanding
, vol.106
, Issue.1
, pp. 59-70
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
19
-
-
84898798531
-
Unsupervised visual domain adaptation using subspace alignment
-
B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In IEEE ICCV, pages 2960-2967, 2013.
-
(2013)
IEEE ICCV
, pp. 2960-2967
-
-
Fernando, B.1
Habrard, A.2
Sebban, M.3
Tuytelaars, T.4
-
20
-
-
84940386535
-
Joint crossdomain classification and subspace learning for unsupervised adaptation
-
B. Fernando, T. Tommasi, and T. Tuytelaarsc. Joint crossdomain classification and subspace learning for unsupervised adaptation. Pattern Recogition Letters, 2015.
-
(2015)
Pattern Recogition Letters
-
-
Fernando, B.1
Tommasi, T.2
Tuytelaarsc, T.3
-
22
-
-
84979887690
-
Domainadversarial training of neural networks
-
Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domainadversarial training of neural networks. Journal of Machine Learning Research, 17 (59): 1-35, 2016.
-
(2016)
Journal of Machine Learning Research
, vol.17
, Issue.59
, pp. 1-35
-
-
Ganin, Y.1
Ustinova, E.2
Ajakan, H.3
Germain, P.4
Larochelle, H.5
Laviolette, F.6
Marchand, M.7
Lempitsky, V.8
-
24
-
-
84973915327
-
Domain generalization for object recognition with multi-task autoencoders
-
M. Ghifary, W. Bastiaan Kleijn, M. Zhang, and D. Balduzzi. Domain generalization for object recognition with multi-task autoencoders. In Proceedings of the IEEE International Conference on Computer Vision, pages 2551-2559, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 2551-2559
-
-
Ghifary, M.1
Bastiaan Kleijn, W.2
Zhang, M.3
Balduzzi, D.4
-
25
-
-
84990068644
-
Deep reconstruction-classification networks for unsupervised domain adaptation
-
Springer
-
M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li. Deep reconstruction-classification networks for unsupervised domain adaptation. In European Conference on Computer Vision, pages 597-613. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 597-613
-
-
Ghifary, M.1
Kleijn, W.B.2
Zhang, M.3
Balduzzi, D.4
Li, W.5
-
26
-
-
84866657270
-
Geodesic flow kernel for unsupervised domain adaptation
-
IEEE
-
B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2066-2073. IEEE, 2012.
-
(2012)
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
, pp. 2066-2073
-
-
Gong, B.1
Shi, Y.2
Sha, F.3
Grauman, K.4
-
27
-
-
84863396387
-
Domain adaptation for object recognition: An unsupervised approach
-
R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In IEEE ICCV, pages 999-1006, 2011.
-
(2011)
IEEE ICCV
, pp. 999-1006
-
-
Gopalan, R.1
Li, R.2
Chellappa, R.3
-
28
-
-
85148036176
-
A kernel method for the two-sample-problem
-
A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola. A kernel method for the two-sample-problem. In NIPS, 2006.
-
(2006)
NIPS
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.3
Schölkopf, B.4
Smola, A.J.5
-
29
-
-
84867122134
-
Cross language text classification via subspace co-regularized multi-view learning
-
Edinburgh, Scotland, UK, June 26-July 1, 2012
-
Y. Guo and M. Xiao. Cross language text classification via subspace co-regularized multi-view learning. In Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26-July 1, 2012, 2012.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning, ICML 2012
-
-
Guo, Y.1
Xiao, M.2
-
30
-
-
33845594569
-
Dimensionality reduction by learning an invariant mapping
-
IEEE
-
R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In Computer vision and pattern recognition, 2006 IEEE computer society conference on, volume 2, pages 1735-1742. IEEE, 2006.
-
(2006)
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
, vol.2
, pp. 1735-1742
-
-
Hadsell, R.1
Chopra, S.2
LeCun, Y.3
-
32
-
-
84867852273
-
Undoing the damage of dataset bias
-
Springer
-
A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba. Undoing the damage of dataset bias. In European Conference on Computer Vision, pages 158-171. Springer, 2012.
-
(2012)
European Conference on Computer Vision
, pp. 158-171
-
-
Khosla, A.1
Zhou, T.2
Malisiewicz, T.3
Efros, A.A.4
Torralba, A.5
-
34
-
-
80052895155
-
What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
-
IEEE
-
B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1785-1792. IEEE, 2011.
-
(2011)
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
, pp. 1785-1792
-
-
Kulis, B.1
Saenko, K.2
Darrell, T.3
-
36
-
-
84896724050
-
Learning using privileged information: SVM+ and weighted SVM
-
M. Lapin, M. Hein, and B. Schiele. Learning using privileged information: SVM+ and weighted SVM. Neural Networks, 53: 95-108, 2014.
-
(2014)
Neural Networks
, vol.53
, pp. 95-108
-
-
Lapin, M.1
Hein, M.2
Schiele, B.3
-
37
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
39
-
-
84969549144
-
Learning transferable features with deep adaptation networks
-
M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with deep adaptation networks. In ICML, pages 97-105, 2015.
-
(2015)
ICML
, pp. 97-105
-
-
Long, M.1
Cao, Y.2
Wang, J.3
Jordan, M.I.4
-
40
-
-
84887338420
-
Transfer sparse coding for robust image representation
-
M. Long, G. Ding, J. Wang, J. Sun, Y. Guo, and P. S. Yu. Transfer sparse coding for robust image representation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 407-414, 2013.
-
(2013)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 407-414
-
-
Long, M.1
Ding, G.2
Wang, J.3
Sun, J.4
Guo, Y.5
Yu, P.S.6
-
42
-
-
84990030052
-
Information bottleneck domain adaptation with privileged information for visual recognition
-
Springer
-
S. Motiian and G. Doretto. Information bottleneck domain adaptation with privileged information for visual recognition. In European Conference on Computer Vision, pages 630-647. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 630-647
-
-
Motiian, S.1
Doretto, G.2
-
43
-
-
84986265072
-
Information bottleneck learning using privileged information for visual recognition
-
S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto. Information bottleneck learning using privileged information for visual recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1496-1505, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1496-1505
-
-
Motiian, S.1
Piccirilli, M.2
Adjeroh, D.A.3
Doretto, G.4
-
44
-
-
84897517066
-
Domain generalization via invariant feature representation
-
K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization via invariant feature representation. In ICML (1), pages 10-18, 2013.
-
(2013)
ICML (1)
, pp. 10-18
-
-
Muandet, K.1
Balduzzi, D.2
Schölkopf, B.3
-
47
-
-
79951681949
-
Domain adaptation via transfer component analysis
-
S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. IEEE TNN, 22 (2): 199-210, 2011.
-
(2011)
IEEE TNN
, vol.22
, Issue.2
, pp. 199-210
-
-
Pan, S.J.1
Tsang, I.W.2
Kwok, J.T.3
Yang, Q.4
-
48
-
-
42549095587
-
Dataset issues in object recognition
-
Springer
-
J. Ponce, T. L. Berg, M. Everingham, D. A. Forsyth, M. Hebert, S. Lazebnik, M. Marszalek, C. Schmid, B. C. Russell, A. Torralba, et al. Dataset issues in object recognition. In Toward category-level object recognition, pages 29-48. Springer, 2006.
-
(2006)
Toward Category-level Object Recognition
, pp. 29-48
-
-
Ponce, J.1
Berg, T.L.2
Everingham, M.3
Forsyth, D.A.4
Hebert, M.5
Lazebnik, S.6
Marszalek, M.7
Schmid, C.8
Russell, B.C.9
Torralba, A.10
-
49
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 833-840, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
51
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
52
-
-
39749186006
-
Labelme: A database and web-based tool for image annotation
-
B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: A database and web-based tool for image annotation. International journal of computer vision, 77 (1-3): 157-173, 2008.
-
(2008)
International Journal of Computer Vision
, vol.77
, Issue.1-3
, pp. 157-173
-
-
Russell, B.C.1
Torralba, A.2
Murphy, K.P.3
Freeman, W.T.4
-
53
-
-
78149318752
-
Adapting visual category models to new domains
-
K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, pages 213-226, 2010.
-
(2010)
ECCV
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
54
-
-
0037527188
-
Improving predictive inference under covariate shift by weighting the log-likelihood function
-
H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90 (2): 227-244, 2000.
-
(2000)
Journal of Statistical Planning and Inference
, vol.90
, Issue.2
, pp. 227-244
-
-
Shimodaira, H.1
-
56
-
-
85006058961
-
Deep coral: Correlation alignment for deep domain adaptation
-
Springer
-
B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In Computer Vision-ECCV 2016 Workshops, pages 443-450. Springer, 2016.
-
(2016)
Computer Vision-ECCV 2016 Workshops
, pp. 443-450
-
-
Sun, B.1
Saenko, K.2
-
57
-
-
85006073829
-
Learning the roots of visual domain shift
-
Springer
-
T. Tommasi, M. Lanzi, P. Russo, and B. Caputo. Learning the roots of visual domain shift. In Computer Vision-ECCV 2016 Workshops, pages 475-482. Springer, 2016.
-
(2016)
Computer Vision-ECCV 2016 Workshops
, pp. 475-482
-
-
Tommasi, T.1
Lanzi, M.2
Russo, P.3
Caputo, B.4
-
58
-
-
84952359654
-
A deeper look at dataset bias
-
Springer
-
T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars. A deeper look at dataset bias. In German Conference on Pattern Recognition, pages 504-516. Springer, 2015.
-
(2015)
German Conference on Pattern Recognition
, pp. 504-516
-
-
Tommasi, T.1
Patricia, N.2
Caputo, B.3
Tuytelaars, T.4
-
62
-
-
84969568676
-
-
arXiv preprint arXiv: 1412. 3474
-
E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion: Maximizing for domain invariance. ArXiv preprint arXiv: 1412. 3474, 2014.
-
(2014)
Deep Domain Confusion: Maximizing for Domain Invariance
-
-
Tzeng, E.1
Hoffman, J.2
Zhang, N.3
Saenko, K.4
Darrell, T.5
-
63
-
-
84990038547
-
A siamese long short-term memory architecture for human reidentification
-
Springer
-
R. R. Varior, B. Shuai, J. Lu, D. Xu, and G. Wang. A siamese long short-term memory architecture for human reidentification. In European Conference on Computer Vision, pages 135-153. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 135-153
-
-
Varior, R.R.1
Shuai, B.2
Lu, J.3
Xu, D.4
Wang, G.5
-
64
-
-
84908170205
-
Cross-domain metric learning based on information theory
-
H. Wang, W. Wang, C. Zhang, and F. Xu. Cross-domain metric learning based on information theory. In AAAI, pages 2099-2105, 2014.
-
(2014)
AAAI
, pp. 2099-2105
-
-
Wang, H.1
Wang, W.2
Zhang, C.3
Xu, F.4
-
65
-
-
84906489727
-
Exploiting low-rank structure from latent domains for domain generalization
-
Z. Xu, W. Li, L. Niu, and D. Xu. Exploiting low-rank structure from latent domains for domain generalization. In ECCV, pages 628-643, 2014.
-
(2014)
ECCV
, pp. 628-643
-
-
Xu, Z.1
Li, W.2
Niu, L.3
Xu, D.4
-
66
-
-
49549114434
-
Adapting SVM classifiers to data with shifted distributions
-
IEEE
-
J. Yang, R. Yan, and A. G. Hauptmann. Adapting svm classifiers to data with shifted distributions. In Data MiningWorkshops, 2007. ICDMWorkshops 2007. Seventh IEEE International Conference on, pages 69-76. IEEE, 2007.
-
(2007)
Data MiningWorkshops, 2007. ICDMWorkshops 2007. Seventh IEEE International Conference on
, pp. 69-76
-
-
Yang, J.1
Yan, R.2
Hauptmann, A.G.3
-
67
-
-
84959208821
-
Semisupervised domain adaptation with subspace learning for visual recognition
-
June
-
T. Yao, Y. Pan, C.-W. Ngo, H. Li, and T. Mei. Semisupervised domain adaptation with subspace learning for visual recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.
-
(2015)
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Yao, T.1
Pan, Y.2
Ngo, C.-W.3
Li, H.4
Mei, T.5
|