메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1418-1425

Recognizing RGB images by learning from RGB-D data

Author keywords

domain adaptation; gender recognition; object recognition; RGB D; transfer learning

Indexed keywords

OBJECT RECOGNITION; TRANSFER LEARNING;

EID: 84906493570     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.184     Document Type: Conference Paper
Times cited : (57)

References (31)
  • 1
    • 84898798212 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by domain invariant projection
    • M. Baktashmotlagh, M. Harandi, and M. S. Brian Lovell. Unsupervised domain adaptation by domain invariant projection. In ICCV, 2013.
    • (2013) ICCV
    • Baktashmotlagh, M.1    Harandi, M.2    Brian Lovell, M.S.3
  • 2
    • 84455172978 scopus 로고    scopus 로고
    • Depth kernel descriptors for object recognition
    • L. Bo, X. Ren, and D. Fox. Depth kernel descriptors for object recognition. In IROS, 2011.
    • (2011) IROS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 3
    • 84887396117 scopus 로고    scopus 로고
    • Event recognition in videos by learning from heterogeneous web sources
    • L. Chen, L. Duan, and D. Xu. Event recognition in videos by learning from heterogeneous web sources. In CVPR, pages 2666-2673, 2013.
    • (2013) CVPR , pp. 2666-2673
    • Chen, L.1    Duan, L.2    Xu, D.3
  • 4
    • 50949127968 scopus 로고    scopus 로고
    • Learning from multiple sources
    • K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. JMLR, 9:1757-1774, 2008.
    • (2008) JMLR , vol.9 , pp. 1757-1774
    • Crammer, K.1    Kearns, M.2    Wortman, J.3
  • 5
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, 2:265-292, 2002.
    • (2002) JMLR , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 6
    • 84863393661 scopus 로고    scopus 로고
    • Domain transfer multiple kernel learning
    • March
    • L. Duan, I. W. Tsang, and D. Xu. Domain transfer multiple kernel learning. T-PAMI, 34(3):465-479, March 2012.
    • (2012) T-PAMI , vol.34 , Issue.3 , pp. 465-479
    • Duan, L.1    Tsang, I.W.2    Xu, D.3
  • 7
    • 84862192949 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources: A domain-dependent regularization approach
    • L. Duan, I. W. Tsang, D. Xu, and T. Chua. Domain adaptation from multiple sources: A domain-dependent regularization approach. T-NNLS, 23(3):504-518, 2012.
    • (2012) T-NNLS , vol.23 , Issue.3 , pp. 504-518
    • Duan, L.1    Tsang, I.W.2    Xu, D.3    Chua, T.4
  • 8
    • 84866710696 scopus 로고    scopus 로고
    • Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach
    • L. Duan, D. Xu, and S.-F. Chang. Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach. In CVPR, pages 1338-1345, 2012.
    • (2012) CVPR , pp. 1338-1345
    • Duan, L.1    Xu, D.2    Chang, S.-F.3
  • 9
    • 84867113087 scopus 로고    scopus 로고
    • Learning with augmented features for heterogeneous domain adaptation
    • L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for heterogeneous domain adaptation. In ICML, pages 711-718, 2012.
    • (2012) ICML , pp. 711-718
    • Duan, L.1    Xu, D.2    Tsang, I.W.3
  • 10
    • 84865579385 scopus 로고    scopus 로고
    • Visual event recognition in videos by learning from web data
    • September
    • L. Duan, D. Xu, I. W. Tsang, and J. Luo. Visual event recognition in videos by learning from web data. T-PAMI, 34(9):1667-1680, September 2012.
    • (2012) T-PAMI , vol.34 , Issue.9 , pp. 1667-1680
    • Duan, L.1    Xu, D.2    Tsang, I.W.3    Luo, J.4
  • 11
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • R. Fan, K. Chang, and C. Hsieh. LIBLINEAR: A library for large linear classification. JMLR, 9:1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.1    Chang, K.2    Hsieh, C.3
  • 13
    • 84898798531 scopus 로고    scopus 로고
    • Unsupervised visual domain adaptation using subspace alignment
    • B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In ICCV, 2013.
    • (2013) ICCV
    • Fernando, B.1    Habrard, A.2    Sebban, M.3    Tuytelaars, T.4
  • 14
    • 84897476317 scopus 로고    scopus 로고
    • Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
    • B. Gong, K. Grauman, and F. Sha. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In ICML, 2013.
    • (2013) ICML
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 15
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsuper-vised domain adaptation
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsuper-vised domain adaptation. In CVPR, 2012.
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 16
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV, 2011.
    • (2011) ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 19
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computing, 16(12):2639-2664, 2004.
    • (2004) Neural Computing , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.R.2    Shawe-Taylor, J.R.3
  • 21
    • 84890505306 scopus 로고    scopus 로고
    • An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data
    • T. Huynh, R. Min, and J.-L. Dugelay. An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data. In ACCV Workshop, 2012.
    • (2012) ACCV Workshop
    • Huynh, T.1    Min, R.2    Dugelay, J.-L.3
  • 22
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR, 2011.
    • (2011) CVPR
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 23
    • 84455168545 scopus 로고    scopus 로고
    • A large-scale hierarchical multi-view RGB-D object dataset
    • K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view RGB-D object dataset. ICRA, 2011.
    • (2011) ICRA
    • Lai, K.1    Bo, L.2    Ren, X.3    Fox, D.4
  • 24
    • 84911377251 scopus 로고    scopus 로고
    • Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation
    • W. Li, L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. T-PAMI, 2013.
    • (2013) T-PAMI
    • Li, W.1    Duan, L.2    Xu, D.3    Tsang, I.W.4
  • 25
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. T-NN, 22(2):199-210, 2009.
    • (2009) T-NN , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.T.3    Yang, Q.4
  • 27
    • 33749243505 scopus 로고    scopus 로고
    • A coregularization approach to semi-supervised learning with multiple views
    • V. Sindhwani, P. Niyogi, and M. Belkin. A coregularization approach to semi-supervised learning with multiple views. In ICML, 2005.
    • (2005) ICML
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 28
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR, 2011.
    • (2011) CVPR
    • Torralba, A.1    Efros, A.A.2
  • 29
    • 68149165759 scopus 로고    scopus 로고
    • A new learning paradigm: Learning using privileged information
    • V. Vapnik and A. Vashist. A new learning paradigm: learning using privileged information. Neural networks, 22(5-6):544-57, 2009.
    • (2009) Neural Networks , vol.22 , Issue.5-6 , pp. 544-557
    • Vapnik, V.1    Vashist, A.2
  • 30
    • 80051961576 scopus 로고    scopus 로고
    • Effective unconstrained face recognition by combining multiple descriptors and learned background statistics
    • L. Wolf, T. Hassner, and Y. Taigman. Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. T-PAMI, 33(10):1978-1990, 2011.
    • (2011) T-PAMI , vol.33 , Issue.10 , pp. 1978-1990
    • Wolf, L.1    Hassner, T.2    Taigman, Y.3
  • 31
    • 80052660541 scopus 로고    scopus 로고
    • Multi-view transfer learning with a large margin approach
    • D. Zhang, J. He, Y. Liu, L. Si, and R. D. Lawrence. Multi-view transfer learning with a large margin approach. In KDD, 2011.
    • (2011) KDD
    • Zhang, D.1    He, J.2    Liu, Y.3    Si, L.4    Lawrence, R.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.