메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 2142-2150

Semi-supervised Domain Adaptation with Subspace Learning for visual recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; OBJECT RECOGNITION;

EID: 84959208821     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298826     Document Type: Conference Paper
Times cited : (245)

References (29)
  • 2
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
    • A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In NIPS, 2010
    • (2010) NIPS
    • Bergamo, A.1    Torresani, L.2
  • 3
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural correspondence learning. In EMNLP, 2006
    • (2006) EMNLP
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 5
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007
    • (2007) ACL
    • Daumé, H.1
  • 8
    • 84867113087 scopus 로고    scopus 로고
    • Learning with augmented features for heterogeneous domain adaptation
    • L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for heterogeneous domain adaptation. In ICML, 2012
    • (2012) ICML
    • Duan, L.1    Xu, D.2    Tsang, I.W.3
  • 9
    • 77956003629 scopus 로고    scopus 로고
    • Visual event recognition in videos by learning from web data
    • L. Duan, D. Xu, I. W. Tsang, and J. Luo. Visual event recognition in videos by learning from web data. In CVPR, 2010
    • (2010) CVPR
    • Duan, L.1    Xu, D.2    Tsang, I.W.3    Luo, J.4
  • 10
    • 84889587692 scopus 로고    scopus 로고
    • Discriminative feature selection for multi-view cross-domain learning
    • Z. Fang and Z. Zhang. Discriminative feature selection for multi-view cross-domain learning. In CIKM, 2013
    • (2013) CIKM
    • Fang, Z.1    Zhang, Z.2
  • 11
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 12
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV, 2011
    • (2011) ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 13
    • 84867122134 scopus 로고    scopus 로고
    • Cross language text classification via subspace co-regularized multi-view learning
    • Y. Guo and M. Xiao. Cross language text classification via subspace co-regularized multi-view learning. In ICML, 2012
    • (2012) ICML
    • Guo, Y.1    Xiao, M.2
  • 14
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation in nlp
    • J. Jiang and C. Zhai. Instance weighting for domain adaptation in nlp. In ACL, 2007
    • (2007) ACL
    • Jiang, J.1    Zhai, C.2
  • 15
    • 70350618771 scopus 로고    scopus 로고
    • Fast similarity search for learned metrics
    • B. Kulis, P. Jain, and K. Grauman. Fast similarity search for learned metrics. IEEE Trans. on PAMI, 39(12):2143-2157, 2009
    • (2009) IEEE Trans. on PAMI , vol.39 , Issue.12 , pp. 2143-2157
    • Kulis, B.1    Jain, P.2    Grauman, K.3
  • 16
    • 84911456577 scopus 로고    scopus 로고
    • Transfer joint matching for unsupervised domain adaptation
    • M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu. Transfer joint matching for unsupervised domain adaptation. In CVPR, 2014
    • (2014) CVPR
    • Long, M.1    Wang, J.2    Ding, G.3    Sun, J.4    Yu, P.S.5
  • 17
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • S. Melacci and M. Belkin. Laplacian support vector machines trained in the primal. Journal of Machine Learning Research, 12:1149-1184, 2011
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 18
    • 84905717520 scopus 로고    scopus 로고
    • Vireo/dvmm at trecvid 2009: Highlevel feature extraction, automatic video search, and contentbased copy detection
    • C.-W. Ngo, Y.-G. Jiang, X. Y. Wei, W. L. Zhao, Y. Liu, S. A. Zhu, and S.-F. Chang. Vireo/dvmm at trecvid 2009: Highlevel feature extraction, automatic video search, and contentbased copy detection. In NIST TRECVID workshop, 2009
    • (2009) NIST TRECVID Workshop
    • Ngo, C.-W.1    Jiang, Y.-G.2    Wei, X.Y.3    Zhao, W.L.4    Liu, Y.5    Zhu, S.A.6    Chang, S.-F.7
  • 21
    • 70350654194 scopus 로고    scopus 로고
    • Transfer learning via dimensionality reduction
    • S. J. Pan, J. T. Kwok, and Q. Yang. Transfer learning via dimensionality reduction. In AAAI, 2008
    • (2008) AAAI
    • Pan, S.J.1    Kwok, J.T.2    Yang, Q.3
  • 23
    • 0001691818 scopus 로고
    • On the behavior of randomization tests without a group invariance assumption
    • J. P. Romano. On the behavior of randomization tests without a group invariance assumption. Journal of the American Statistical Association, 85(411):686-692, 1990
    • (1990) Journal of the American Statistical Association , vol.85 , Issue.411 , pp. 686-692
    • Romano, J.P.1
  • 24
    • 80052906503 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, 2010
    • (2010) ECCV
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 25
    • 84867124651 scopus 로고    scopus 로고
    • Information-theoretical learning of discriminative clusters for unsupervised domain adaptation
    • Y. Shi and F. Sha. Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. In ICML, 2012
    • (2012) ICML
    • Shi, Y.1    Sha, F.2
  • 26
    • 78751695885 scopus 로고    scopus 로고
    • Manifold alignment without correspondence
    • C. Wang and S. Mahadevan. Manifold alignment without correspondence. In IJCAI, 2009
    • (2009) IJCAI
    • Wang, C.1    Mahadevan, S.2
  • 27
    • 84879905842 scopus 로고    scopus 로고
    • A feasible method for optimization with orthogonality constrains
    • Z. Wen and W. Yin. A feasible method for optimization with orthogonality constrains. Mathematical Programming, 142:397-434, 2013
    • (2013) Mathematical Programming , vol.142 , pp. 397-434
    • Wen, Z.1    Yin, W.2
  • 28
    • 57549111074 scopus 로고    scopus 로고
    • Cross-domain video concept detection using adaptive svms
    • J. Yang, R. Yan, and A. G. Hauptmann. Cross-domain video concept detection using adaptive svms. In ACM MM, 2007
    • (2007) ACM MM
    • Yang, J.1    Yan, R.2    Hauptmann, A.G.3
  • 29
    • 84887488958 scopus 로고    scopus 로고
    • Predicting domain adaptivity: Redo or recycle
    • T. Yao, C.-W. Ngo, and S. Zhu. Predicting domain adaptivity: Redo or recycle? In ACM MM, 2012.
    • (2012) ACM MM
    • Yao, T.1    Ngo, C.-W.2    Zhu, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.