메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1496-1505

Information bottleneck learning using privileged information for visual recognition

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER VISION; INFORMATION THEORY; INFORMATION USE; SALINITY MEASUREMENT;

EID: 84986265072     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.166     Document Type: Conference Paper
Times cited : (76)

References (51)
  • 3
    • 85156234841 scopus 로고    scopus 로고
    • Extracting relevant structures with side information
    • G. Chechik and N. Tishby. Extracting relevant structures with side information. In NIPS, 2002.
    • (2002) NIPS
    • Chechik, G.1    Tishby, N.2
  • 4
    • 84875894439 scopus 로고    scopus 로고
    • Boosting with side information
    • J. Chen, X. Liu, and S. Lyu. Boosting with side information. In ACCV, pages 563-577, 2012.
    • (2012) ACCV , pp. 563-577
    • Chen, J.1    Liu, X.2    Lyu, S.3
  • 5
    • 84906493570 scopus 로고    scopus 로고
    • Recognizing RGB images by learning from RGB-D data
    • L. Chen, W. Li, and D. Xu. Recognizing RGB images by learning from RGB-D data. In CVPR, pages 1418-1425, 2014.
    • (2014) CVPR , pp. 1418-1425
    • Chen, L.1    Li, W.2    Xu, D.3
  • 7
    • 84856671941 scopus 로고    scopus 로고
    • Annotator rationales for visual recognition
    • J. Donahue and K. Grauman. Annotator rationales for visual recognition. In ICCV, pages 1395-1402, 2011.
    • (2011) ICCV , pp. 1395-1402
    • Donahue, J.1    Grauman, K.2
  • 8
    • 70450207704 scopus 로고    scopus 로고
    • Describing objects by their attributes
    • A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. In CVPR, pages 1778-1785, 2009.
    • (2009) CVPR , pp. 1778-1785
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3    Forsyth, D.4
  • 10
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained partbased models
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. IEEE TPAMI, 32 (9): 1627-1645, 2010.
    • (2010) IEEE TPAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 11
    • 70450219358 scopus 로고    scopus 로고
    • Learning visual attributes
    • V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, 2007.
    • (2007) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 12
    • 84937893237 scopus 로고    scopus 로고
    • Object localization based on structural SVM using privileged information
    • J. Feyereisl, S. Kwak, J. Son, and B. Han. Object localization based on structural SVM using privileged information. In NIPS, 2014.
    • (2014) NIPS
    • Feyereisl, J.1    Kwak, S.2    Son, J.3    Han, B.4
  • 14
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In ICCV, 2009.
    • (2009) ICCV
    • Gehler, P.1    Nowozin, S.2
  • 15
    • 84884671324 scopus 로고    scopus 로고
    • Fast alternating linearization methods for minimizing the sum of two convex functions
    • D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for minimizing the sum of two convex functions. Mathematical Programming, 141 (1-2): 349-382, 2013.
    • (2013) Mathematical Programming , vol.141 , Issue.1-2 , pp. 349-382
    • Goldfarb, D.1    Ma, S.2    Scheinberg, K.3
  • 16
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16: 26392664, 2004.
    • (2004) Neural Computation , vol.16 , pp. 26392664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 18
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • T. Joachims. Training linear svms in linear time. In KDD, 2006.
    • (2006) KDD
    • Joachims, T.1
  • 20
    • 84894522762 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot visual object categorization
    • C. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. IEEE TPAMI, 36 (3): 453-465, 2014.
    • (2014) IEEE TPAMI , vol.36 , Issue.3 , pp. 453-465
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 21
    • 84896724050 scopus 로고    scopus 로고
    • Learning using privileged information: SVM+ and weighted SVM
    • M. Lapin, M. Hein, and B. Schiele. Learning using privileged information: SVM+ and weighted SVM. Neural Networks, 53: 95-108, 2014.
    • (2014) Neural Networks , vol.53 , pp. 95-108
    • Lapin, M.1    Hein, M.2    Schiele, B.3
  • 22
    • 40649086418 scopus 로고    scopus 로고
    • Incorporating prior knowledge in support vector machines for classification: A review
    • F. Lauer and G. Bloch. Incorporating prior knowledge in support vector machines for classification: A review. Neurocomputing, 71 (7-9): 1578-1594, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1578-1594
    • Lauer, F.1    Bloch, G.2
  • 23
    • 84887327253 scopus 로고    scopus 로고
    • Harvesting mid-level visual concepts from large-scale internet images
    • Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In CVPR, pages 851-858, 2013.
    • (2013) CVPR , pp. 851-858
    • Li, Q.1    Wu, J.2    Tu, Z.3
  • 24
    • 84906486177 scopus 로고    scopus 로고
    • Exploiting privileged information from web data for image categorization
    • W. Li, L. Niu, and D. Xu. Exploiting privileged information from web data for image categorization. In ECCV, pages 437-452, 2014.
    • (2014) ECCV , pp. 437-452
    • Li, W.1    Niu, L.2    Xu, D.3
  • 25
    • 56349168083 scopus 로고    scopus 로고
    • Connection between SVM+ and multi-task learning
    • L. Liang and V. Cherkassky. Connection between svm+ and multi-task learning. In IJCNN, pages 2048-2054, 2008.
    • (2008) IJCNN , pp. 2048-2054
    • Liang, L.1    Cherkassky, V.2
  • 26
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C. J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19 (10): 2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.J.1
  • 27
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103 (1): 127-152, 2005.
    • (2005) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 29
    • 85162041112 scopus 로고    scopus 로고
    • On the theory of learning with privileged information
    • D. Pechyony and V. Vapnik. On the theory of learning with privileged information. In NIPS, 2010.
    • (2010) NIPS
    • Pechyony, D.1    Vapnik, V.2
  • 32
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, pages 213-226, 2010.
    • (2010) ECCV , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 33
    • 84898813471 scopus 로고    scopus 로고
    • Learning to rank using privileged information
    • V. Sharmanska, N. Quadrianto, and C. Lampert. Learning to rank using privileged information. In IEEE ICCV, pages 825-832, 2013.
    • (2013) IEEE ICCV , pp. 825-832
    • Sharmanska, V.1    Quadrianto, N.2    Lampert, C.3
  • 34
    • 33745827787 scopus 로고    scopus 로고
    • Multivariate information bottleneck
    • N. Slonim, N. Friedman, and N. Tishby. Multivariate information bottleneck. Neural Computation, 18 (8): 1739-1789, 2006.
    • (2006) Neural Computation , vol.18 , Issue.8 , pp. 1739-1789
    • Slonim, N.1    Friedman, N.2    Tishby, N.3
  • 35
    • 0000632147 scopus 로고    scopus 로고
    • Agglomerative information bottleneck
    • N. Slonim and N. Tishby. Agglomerative information bottleneck. In NIPS, 1999.
    • (1999) NIPS
    • Slonim, N.1    Tishby, N.2
  • 37
    • 78149355981 scopus 로고    scopus 로고
    • Efficient object category recognition using classemes
    • L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In ECCV, pages 776-789, 2010.
    • (2010) ECCV , pp. 776-789
    • Torresani, L.1    Szummer, M.2    Fitzgibbon, A.3
  • 38
    • 68149165759 scopus 로고    scopus 로고
    • A new learning paradigm: Learning using privileged information
    • V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural Networks, 22 (5-6): 544-557, 2009.
    • (2009) Neural Networks , vol.22 , Issue.5-6 , pp. 544-557
    • Vapnik, V.1    Vashist, A.2
  • 40
    • 77953196456 scopus 로고    scopus 로고
    • Multiple kernels for object detection
    • Sept
    • A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection. In ICCV, pages 606-613, Sept 2009.
    • (2009) ICCV , pp. 606-613
    • Vedaldi, A.1    Gulshan, V.2    Varma, M.3    Zisserman, A.4
  • 41
    • 84919881476 scopus 로고    scopus 로고
    • Learning with hidden information using a max-margin latent variable model
    • Z. Wang, T. Gao, and Q. Ji. Learning with hidden information using a max-margin latent variable model. In ICPR, pages 1389-1394, 2014.
    • (2014) ICPR , pp. 1389-1394
    • Wang, Z.1    Gao, T.2    Ji, Q.3
  • 42
    • 84959238952 scopus 로고    scopus 로고
    • Classifier learning with hidden information
    • Z. Wang and Q. Ji. Classifier learning with hidden information. In CVPR, pages 4969-4977, 2015.
    • (2015) CVPR , pp. 4969-4977
    • Wang, Z.1    Ji, Q.2
  • 43
    • 84919930633 scopus 로고    scopus 로고
    • Learning with hidden information
    • Z. Wang, X. Wang, and Q. Ji. Learning with hidden information. In ICPR, pages 238-243, 2014.
    • (2014) ICPR , pp. 238-243
    • Wang, Z.1    Wang, X.2    Ji, Q.3
  • 44
    • 84887331684 scopus 로고    scopus 로고
    • The SVM-Minus similarity score for video face recognition
    • L. Wolf and N. Levy. The SVM-Minus similarity score for video face recognition. In CVPR, pages 3523-3530, 2013.
    • (2013) CVPR , pp. 3523-3530
    • Wolf, L.1    Levy, N.2
  • 45
    • 84904192140 scopus 로고    scopus 로고
    • Large-margin multi-view information bottleneck
    • C. Xu, D. Tao, and C. Xu. Large-margin multi-view information bottleneck. IEEE TPAMI, 36 (8): 1559-1572, 2014.
    • (2014) IEEE TPAMI , vol.36 , Issue.8 , pp. 1559-1572
    • Xu, C.1    Tao, D.2    Xu, C.3
  • 46
    • 84958117229 scopus 로고    scopus 로고
    • Distance metric learning using privileged information for face verification and person reidentification
    • X. Xu, W. Li, and D. Xu. Distance metric learning using privileged information for face verification and person reidentification. IEEE Trans. on Neural Networks and Learning Systems, 2015.
    • (2015) IEEE Trans. on Neural Networks and Learning Systems
    • Xu, X.1    Li, W.2    Xu, D.3
  • 47
    • 79959329091 scopus 로고    scopus 로고
    • Kullback-Leibler divergence for nonnegative matrix factorization
    • Z. Yang, H. Zhang, Z. Yuan, and E. Oja. Kullback-Leibler divergence for nonnegative matrix factorization. In ICANN, pages 250-257, 2011.
    • (2011) ICANN , pp. 250-257
    • Yang, Z.1    Zhang, H.2    Yuan, Z.3    Oja, E.4
  • 48
    • 77955998024 scopus 로고    scopus 로고
    • Boosting for transfer learning with multiple sources
    • Y. Yao and G. Doretto. Boosting for transfer learning with multiple sources. In IEEE CVPR, pages 1855-1862, 2010.
    • (2010) IEEE CVPR , pp. 1855-1862
    • Yao, Y.1    Doretto, G.2
  • 49
    • 84962866728 scopus 로고    scopus 로고
    • Multi-view visual recognition of imperfect testing data
    • Q. Zhang and G. Hua. Multi-view visual recognition of imperfect testing data. In ACM MM, pages 561-570, 2015.
    • (2015) ACM MM , pp. 561-570
    • Zhang, Q.1    Hua, G.2
  • 50
    • 84938845555 scopus 로고    scopus 로고
    • Can visual recognition benefit from auxiliary information in training
    • Q. Zhang, G. Hua, W. Liu, Z. Liu, and Z. Zhang. Can visual recognition benefit from auxiliary information in training In ACCV, pages 65-80, 2014.
    • (2014) ACCV , pp. 65-80
    • Zhang, Q.1    Hua, G.2    Liu, W.3    Liu, Z.4    Zhang, Z.5
  • 51
    • 79951751439 scopus 로고    scopus 로고
    • NESVM: A fast gradient method for support vector machines
    • T. Zhou, D. Tao, and X. Wu. NESVM: A fast gradient method for support vector machines. In ICDM, pages 679-688, 2010.
    • (2010) ICDM , pp. 679-688
    • Zhou, T.1    Tao, D.2    Wu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.