-
1
-
-
84897573740
-
A theory of learning from different domains
-
S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning from different domains. Machine Learning, 79 (1-2): 151-175, 2009.
-
(2009)
Machine Learning
, vol.79
, Issue.1-2
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Vaughan, J.W.6
-
3
-
-
85156234841
-
Extracting relevant structures with side information
-
G. Chechik and N. Tishby. Extracting relevant structures with side information. In NIPS, 2002.
-
(2002)
NIPS
-
-
Chechik, G.1
Tishby, N.2
-
4
-
-
84875894439
-
Boosting with side information
-
J. Chen, X. Liu, and S. Lyu. Boosting with side information. In ACCV, pages 563-577, 2012.
-
(2012)
ACCV
, pp. 563-577
-
-
Chen, J.1
Liu, X.2
Lyu, S.3
-
5
-
-
84906493570
-
Recognizing RGB images by learning from RGB-D data
-
L. Chen, W. Li, and D. Xu. Recognizing RGB images by learning from RGB-D data. In CVPR, pages 1418-1425, 2014.
-
(2014)
CVPR
, pp. 1418-1425
-
-
Chen, L.1
Li, W.2
Xu, D.3
-
7
-
-
84856671941
-
Annotator rationales for visual recognition
-
J. Donahue and K. Grauman. Annotator rationales for visual recognition. In ICCV, pages 1395-1402, 2011.
-
(2011)
ICCV
, pp. 1395-1402
-
-
Donahue, J.1
Grauman, K.2
-
8
-
-
70450207704
-
Describing objects by their attributes
-
A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. In CVPR, pages 1778-1785, 2009.
-
(2009)
CVPR
, pp. 1778-1785
-
-
Farhadi, A.1
Endres, I.2
Hoiem, D.3
Forsyth, D.4
-
9
-
-
84871052642
-
Two view learning: SVM-2K, theory and practice
-
J. Farquhar, D. R. Hardoon, H. Meng, J. Shawe-Taylor, and S. Szedmak. Two view learning: SVM-2K, theory and practice. In NIPS, 2006.
-
(2006)
NIPS
-
-
Farquhar, J.1
Hardoon, D.R.2
Meng, H.3
Shawe-Taylor, J.4
Szedmak, S.5
-
10
-
-
77955422240
-
Object detection with discriminatively trained partbased models
-
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. IEEE TPAMI, 32 (9): 1627-1645, 2010.
-
(2010)
IEEE TPAMI
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.1
Girshick, R.2
McAllester, D.3
Ramanan, D.4
-
11
-
-
70450219358
-
Learning visual attributes
-
V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, 2007.
-
(2007)
NIPS
-
-
Ferrari, V.1
Zisserman, A.2
-
12
-
-
84937893237
-
Object localization based on structural SVM using privileged information
-
J. Feyereisl, S. Kwak, J. Son, and B. Han. Object localization based on structural SVM using privileged information. In NIPS, 2014.
-
(2014)
NIPS
-
-
Feyereisl, J.1
Kwak, S.2
Son, J.3
Han, B.4
-
13
-
-
84877924976
-
Incorporating privileged information through metric learning
-
S. Fouad, P. Tino, S. Raychaudhury, and P. Schneider. Incorporating privileged information through metric learning. IEEE Trans. on Neural Networks and Learning Systems, 24 (7): 1086-1098, 2013.
-
(2013)
IEEE Trans. on Neural Networks and Learning Systems
, vol.24
, Issue.7
, pp. 1086-1098
-
-
Fouad, S.1
Tino, P.2
Raychaudhury, S.3
Schneider, P.4
-
14
-
-
85067032737
-
On feature combination for multiclass object classification
-
P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In ICCV, 2009.
-
(2009)
ICCV
-
-
Gehler, P.1
Nowozin, S.2
-
15
-
-
84884671324
-
Fast alternating linearization methods for minimizing the sum of two convex functions
-
D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for minimizing the sum of two convex functions. Mathematical Programming, 141 (1-2): 349-382, 2013.
-
(2013)
Mathematical Programming
, vol.141
, Issue.1-2
, pp. 349-382
-
-
Goldfarb, D.1
Ma, S.2
Scheinberg, K.3
-
16
-
-
10044285992
-
Canonical correlation analysis: An overview with application to learning methods
-
D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16: 26392664, 2004.
-
(2004)
Neural Computation
, vol.16
, pp. 26392664
-
-
Hardoon, D.R.1
Szedmak, S.2
Shawe-Taylor, J.3
-
18
-
-
33749563073
-
Training linear svms in linear time
-
T. Joachims. Training linear svms in linear time. In KDD, 2006.
-
(2006)
KDD
-
-
Joachims, T.1
-
19
-
-
84962901064
-
HMDB: A large video database for human motion recognition
-
H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A large video database for human motion recognition. In IEEE ICCV, 2011.
-
(2011)
IEEE ICCV
-
-
Kuehne, H.1
Jhuang, H.2
Garrote, E.3
Poggio, T.4
Serre, T.5
-
20
-
-
84894522762
-
Attributebased classification for zero-shot visual object categorization
-
C. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. IEEE TPAMI, 36 (3): 453-465, 2014.
-
(2014)
IEEE TPAMI
, vol.36
, Issue.3
, pp. 453-465
-
-
Lampert, C.1
Nickisch, H.2
Harmeling, S.3
-
21
-
-
84896724050
-
Learning using privileged information: SVM+ and weighted SVM
-
M. Lapin, M. Hein, and B. Schiele. Learning using privileged information: SVM+ and weighted SVM. Neural Networks, 53: 95-108, 2014.
-
(2014)
Neural Networks
, vol.53
, pp. 95-108
-
-
Lapin, M.1
Hein, M.2
Schiele, B.3
-
22
-
-
40649086418
-
Incorporating prior knowledge in support vector machines for classification: A review
-
F. Lauer and G. Bloch. Incorporating prior knowledge in support vector machines for classification: A review. Neurocomputing, 71 (7-9): 1578-1594, 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.7-9
, pp. 1578-1594
-
-
Lauer, F.1
Bloch, G.2
-
23
-
-
84887327253
-
Harvesting mid-level visual concepts from large-scale internet images
-
Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In CVPR, pages 851-858, 2013.
-
(2013)
CVPR
, pp. 851-858
-
-
Li, Q.1
Wu, J.2
Tu, Z.3
-
24
-
-
84906486177
-
Exploiting privileged information from web data for image categorization
-
W. Li, L. Niu, and D. Xu. Exploiting privileged information from web data for image categorization. In ECCV, pages 437-452, 2014.
-
(2014)
ECCV
, pp. 437-452
-
-
Li, W.1
Niu, L.2
Xu, D.3
-
25
-
-
56349168083
-
Connection between SVM+ and multi-task learning
-
L. Liang and V. Cherkassky. Connection between svm+ and multi-task learning. In IJCNN, pages 2048-2054, 2008.
-
(2008)
IJCNN
, pp. 2048-2054
-
-
Liang, L.1
Cherkassky, V.2
-
26
-
-
35548969471
-
Projected gradient methods for nonnegative matrix factorization
-
C. J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19 (10): 2756-2779, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.10
, pp. 2756-2779
-
-
Lin, C.J.1
-
27
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103 (1): 127-152, 2005.
-
(2005)
Mathematical Programming
, vol.103
, Issue.1
, pp. 127-152
-
-
Nesterov, Y.1
-
28
-
-
80053437179
-
Multimodal deep learning
-
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal deep learning. In ICML, 2011.
-
(2011)
ICML
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.Y.6
-
29
-
-
85162041112
-
On the theory of learning with privileged information
-
D. Pechyony and V. Vapnik. On the theory of learning with privileged information. In NIPS, 2010.
-
(2010)
NIPS
-
-
Pechyony, D.1
Vapnik, V.2
-
30
-
-
36049014768
-
Hidden conditional random fields
-
A. Quattoni, S. Wang, L. Morency, M. Collins, and T. Darrell. Hidden conditional random fields. IEEE TPAMI, 29 (10): 1848-1852, 2007.
-
(2007)
IEEE TPAMI
, vol.29
, Issue.10
, pp. 1848-1852
-
-
Quattoni, A.1
Wang, S.2
Morency, L.3
Collins, M.4
Darrell, T.5
-
31
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
32
-
-
78149318752
-
Adapting visual category models to new domains
-
K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, pages 213-226, 2010.
-
(2010)
ECCV
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
33
-
-
84898813471
-
Learning to rank using privileged information
-
V. Sharmanska, N. Quadrianto, and C. Lampert. Learning to rank using privileged information. In IEEE ICCV, pages 825-832, 2013.
-
(2013)
IEEE ICCV
, pp. 825-832
-
-
Sharmanska, V.1
Quadrianto, N.2
Lampert, C.3
-
34
-
-
33745827787
-
Multivariate information bottleneck
-
N. Slonim, N. Friedman, and N. Tishby. Multivariate information bottleneck. Neural Computation, 18 (8): 1739-1789, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.8
, pp. 1739-1789
-
-
Slonim, N.1
Friedman, N.2
Tishby, N.3
-
35
-
-
0000632147
-
Agglomerative information bottleneck
-
N. Slonim and N. Tishby. Agglomerative information bottleneck. In NIPS, 1999.
-
(1999)
NIPS
-
-
Slonim, N.1
Tishby, N.2
-
36
-
-
0001808038
-
The information bottleneck method
-
N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Allerton Conference on Communication, Control, and Computing, pages 368-377, 1999.
-
(1999)
Allerton Conference on Communication, Control, and Computing
, pp. 368-377
-
-
Tishby, N.1
Pereira, F.2
Bialek, W.3
-
37
-
-
78149355981
-
Efficient object category recognition using classemes
-
L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In ECCV, pages 776-789, 2010.
-
(2010)
ECCV
, pp. 776-789
-
-
Torresani, L.1
Szummer, M.2
Fitzgibbon, A.3
-
38
-
-
68149165759
-
A new learning paradigm: Learning using privileged information
-
V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural Networks, 22 (5-6): 544-557, 2009.
-
(2009)
Neural Networks
, vol.22
, Issue.5-6
, pp. 544-557
-
-
Vapnik, V.1
Vashist, A.2
-
40
-
-
77953196456
-
Multiple kernels for object detection
-
Sept
-
A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection. In ICCV, pages 606-613, Sept 2009.
-
(2009)
ICCV
, pp. 606-613
-
-
Vedaldi, A.1
Gulshan, V.2
Varma, M.3
Zisserman, A.4
-
41
-
-
84919881476
-
Learning with hidden information using a max-margin latent variable model
-
Z. Wang, T. Gao, and Q. Ji. Learning with hidden information using a max-margin latent variable model. In ICPR, pages 1389-1394, 2014.
-
(2014)
ICPR
, pp. 1389-1394
-
-
Wang, Z.1
Gao, T.2
Ji, Q.3
-
42
-
-
84959238952
-
Classifier learning with hidden information
-
Z. Wang and Q. Ji. Classifier learning with hidden information. In CVPR, pages 4969-4977, 2015.
-
(2015)
CVPR
, pp. 4969-4977
-
-
Wang, Z.1
Ji, Q.2
-
43
-
-
84919930633
-
Learning with hidden information
-
Z. Wang, X. Wang, and Q. Ji. Learning with hidden information. In ICPR, pages 238-243, 2014.
-
(2014)
ICPR
, pp. 238-243
-
-
Wang, Z.1
Wang, X.2
Ji, Q.3
-
44
-
-
84887331684
-
The SVM-Minus similarity score for video face recognition
-
L. Wolf and N. Levy. The SVM-Minus similarity score for video face recognition. In CVPR, pages 3523-3530, 2013.
-
(2013)
CVPR
, pp. 3523-3530
-
-
Wolf, L.1
Levy, N.2
-
45
-
-
84904192140
-
Large-margin multi-view information bottleneck
-
C. Xu, D. Tao, and C. Xu. Large-margin multi-view information bottleneck. IEEE TPAMI, 36 (8): 1559-1572, 2014.
-
(2014)
IEEE TPAMI
, vol.36
, Issue.8
, pp. 1559-1572
-
-
Xu, C.1
Tao, D.2
Xu, C.3
-
46
-
-
84958117229
-
Distance metric learning using privileged information for face verification and person reidentification
-
X. Xu, W. Li, and D. Xu. Distance metric learning using privileged information for face verification and person reidentification. IEEE Trans. on Neural Networks and Learning Systems, 2015.
-
(2015)
IEEE Trans. on Neural Networks and Learning Systems
-
-
Xu, X.1
Li, W.2
Xu, D.3
-
47
-
-
79959329091
-
Kullback-Leibler divergence for nonnegative matrix factorization
-
Z. Yang, H. Zhang, Z. Yuan, and E. Oja. Kullback-Leibler divergence for nonnegative matrix factorization. In ICANN, pages 250-257, 2011.
-
(2011)
ICANN
, pp. 250-257
-
-
Yang, Z.1
Zhang, H.2
Yuan, Z.3
Oja, E.4
-
48
-
-
77955998024
-
Boosting for transfer learning with multiple sources
-
Y. Yao and G. Doretto. Boosting for transfer learning with multiple sources. In IEEE CVPR, pages 1855-1862, 2010.
-
(2010)
IEEE CVPR
, pp. 1855-1862
-
-
Yao, Y.1
Doretto, G.2
-
49
-
-
84962866728
-
Multi-view visual recognition of imperfect testing data
-
Q. Zhang and G. Hua. Multi-view visual recognition of imperfect testing data. In ACM MM, pages 561-570, 2015.
-
(2015)
ACM MM
, pp. 561-570
-
-
Zhang, Q.1
Hua, G.2
-
50
-
-
84938845555
-
Can visual recognition benefit from auxiliary information in training
-
Q. Zhang, G. Hua, W. Liu, Z. Liu, and Z. Zhang. Can visual recognition benefit from auxiliary information in training In ACCV, pages 65-80, 2014.
-
(2014)
ACCV
, pp. 65-80
-
-
Zhang, Q.1
Hua, G.2
Liu, W.3
Liu, Z.4
Zhang, Z.5
-
51
-
-
79951751439
-
NESVM: A fast gradient method for support vector machines
-
T. Zhou, D. Tao, and X. Wu. NESVM: A fast gradient method for support vector machines. In ICDM, pages 679-688, 2010.
-
(2010)
ICDM
, pp. 679-688
-
-
Zhou, T.1
Tao, D.2
Wu, X.3
|