-
1
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In International Conference on Machine Learning (ICML), pages 647-655, 2014.
-
(2014)
International Conference on Machine Learning (ICML)
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
2
-
-
84937508363
-
-
Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks? In Neural Information Processing Systems (NIPS), pages 3320-3328, 2014.
-
(2014)
How Transferable Are Features in Deep Neural Networks? in Neural Information Processing Systems (NIPS)
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
3
-
-
70349847999
-
-
MIT Press, Cambridge, MA, USA
-
A. Gretton, AJ. Smola, J. Huang, M. Schmittfull, KM. Borgwardt, and B. Schölkopf. Covariate shift and local learning by distribution matching, pages 131-160. MIT Press, Cambridge, MA, USA, 2009.
-
(2009)
Covariate Shift and Local Learning by Distribution Matching
, pp. 131-160
-
-
Gretton, A.1
Smola, A.J.2
Huang, J.3
Schmittfull, M.4
Borgwardt, K.M.5
Schölkopf, B.6
-
4
-
-
80052908300
-
Unbiased look at dataset bias
-
June
-
Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In CVPR'11, June 2011.
-
(2011)
CVPR'11
-
-
Torralba, A.1
Efros, A.A.2
-
5
-
-
84979928562
-
Deep domain confusion: Maximizing for domain invariance
-
abs/1412.3474
-
Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing for domain invariance. CoRR, abs/1412.3474, 2014.
-
(2014)
CoRR
-
-
Tzeng, E.1
Hoffman, J.2
Zhang, N.3
Saenko, K.4
Darrell, T.5
-
9
-
-
84990068644
-
Deep reconstruction-classification networks for unsupervised domain adaptation
-
Springer
-
Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li. Deep reconstruction-classification networks for unsupervised domain adaptation. In European Conference on Computer Vision (ECCV), pages 597-613. Springer, 2016.
-
(2016)
European Conference on Computer Vision (ECCV)
, pp. 597-613
-
-
Ghifary, M.1
Bastiaan Kleijn, W.2
Zhang, M.3
Balduzzi, D.4
Li, W.5
-
10
-
-
84937849144
-
Generative adversarial nets
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems 27. 2014. 2, 5
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
11
-
-
84969802531
-
Unsupervised domain adaptation by backpropagation
-
David Blei and Francis Bach, editors, JMLR Workshop and Conference Proceedings
-
Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In David Blei and Francis Bach, editors, Proceedings of the 32nd International Conference on Machine Learning (ICML- 15), pages 1180-1189. JMLR Workshop and Conference Proceedings, 2015.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML- 15)
, pp. 1180-1189
-
-
Ganin, Y.1
Lempitsky, V.2
-
13
-
-
85048402040
-
Coupled generative adversarial networks
-
abs/1606.07536
-
Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. CoRR, abs/1606.07536, 2016.
-
(2016)
CoRR
-
-
Liu, M.1
Tuzel, O.2
-
14
-
-
85019197138
-
Learning transferrable representations for unsupervised domain adaptation
-
Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio Savarese. Learning transferrable representations for unsupervised domain adaptation. In NIPS, 2016.
-
(2016)
NIPS
-
-
Sener, O.1
Oh Song, H.2
Saxena, A.3
Savarese, S.4
-
15
-
-
85018890883
-
Domain separation networks
-
Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan. Domain separation networks. In Advances in Neural Information Processing Systems, pages 343-351, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 343-351
-
-
Bousmalis, K.1
Trigeorgis, G.2
Silberman, N.3
Krishnan, D.4
Erhan, D.5
-
16
-
-
85044374406
-
Adversarial feature learning
-
abs/1605.09782
-
Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. CoRR, abs/1605.09782, 2016.
-
(2016)
CoRR
-
-
Donahue, J.1
Krähenbühl, P.2
Darrell, T.3
-
17
-
-
84965170996
-
Conditional generative adversarial nets
-
abs/1411.1784
-
Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR, abs/1411.1784, 2014.
-
(2014)
CoRR
-
-
Mirza, M.1
Osindero, S.2
-
19
-
-
84979887690
-
Domainadversarial training of neural networks
-
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domainadversarial training of neural networks. Journal of Machine Learning Research, 17(59):1-35, 2016.
-
(2016)
Journal of Machine Learning Research
, vol.17
, Issue.59
, pp. 1-35
-
-
Ganin, Y.1
Ustinova, E.2
Ajakan, H.3
Germain, P.4
Larochelle, H.5
Laviolette, F.6
Marchand, M.7
Lempitsky, V.8
-
20
-
-
85037812322
-
Beyond sharing weights for deep domain adaptation
-
abs/1603.06432
-
Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. Beyond sharing weights for deep domain adaptation. CoRR, abs/1603.06432, 2016.
-
(2016)
CoRR
-
-
Rozantsev, A.1
Salzmann, M.2
Fua, P.3
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
November
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
22
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011.
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
24
-
-
78149318752
-
Adapting visual category models to new domains
-
Springer
-
Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains. In European conference on computer vision, pages 213-226. Springer, 2010.
-
(2010)
European Conference on Computer Vision
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
25
-
-
84898835181
-
Transfer feature learning with joint distribution adaptation
-
Dec
-
M. Long, J.Wang, G. Ding, J. Sun, and P. S. Yu. Transfer feature learning with joint distribution adaptation. In 2013 IEEE International Conference on Computer Vision, pages 2200-2207, Dec 2013.
-
(2013)
2013 IEEE International Conference on Computer Vision
, pp. 2200-2207
-
-
Long, M.1
Wang, J.2
Ding, G.3
Sun, J.4
Yu, P.S.5
-
26
-
-
84913555165
-
-
arXiv preprint arXiv: 1408.5093
-
Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
27
-
-
85083951076
-
Adam: A method for stochastic optimization
-
abs/1412.6980
-
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
-
(2014)
CoRR
-
-
Kingma, D.P.1
Ba, J.2
-
28
-
-
84906344142
-
Learning rich features from rgb-d images for object detection and segmentation
-
Springer
-
Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning rich features from rgb-d images for object detection and segmentation. In European Conference on Computer Vision (ECCV), pages 345- 360. Springer, 2014.
-
(2014)
European Conference on Computer Vision (ECCV)
, pp. 345-360
-
-
Gupta, S.1
Girshick, R.2
Arbeláez, P.3
Malik, J.4
-
29
-
-
84933585162
-
Very deep convolutional networks for large-scale image recognition
-
abs/1409.1556
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
-
(2014)
CoRR
-
-
Simonyan, K.1
Zisserman, A.2
|