메뉴 건너뛰기




Volumn , Issue , 2007, Pages 69-74

Adapting SVM classifiers to data with shifted distributions

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE SUPPORT; BASELINE METHODS; CLASSIFICATION ERRORS; DATA MINING APPLICATIONS; DATA SETS; INTERNATIONAL CONFERENCES; LOSS MINIMIZATION; OBJECTIVE FUNCTION; SELECTIVE SAMPLING; SVM CLASSIFIERS; VIDEO CLASSIFICATION;

EID: 49549114434     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2007.37     Document Type: Conference Paper
Times cited : (139)

References (11)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 3
    • 0141804082 scopus 로고    scopus 로고
    • Detecting concept drift with support vector machines
    • R. Klinkenberg and T. Joachims. Detecting concept drift with support vector machines. In Proc. of ICML, pages 487-494, 2000.
    • (2000) Proc. of ICML , pp. 487-494
    • Klinkenberg, R.1    Joachims, T.2
  • 4
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: A new ensemble method for tracking concept drift. In Proc. of ICDM, page 123, 2003.
    • (2003) Proc. of ICDM , pp. 123
    • Kolter, J.Z.1    Maloof, M.A.2
  • 5
    • 31844444368 scopus 로고    scopus 로고
    • Logistic regression with an auxiliary data source
    • X. Liao, Y. Xue, and L. Carin. Logistic regression with an auxiliary data source. In Proc. of ICML, pages 505-512, 2005.
    • (2005) Proc. of ICML , pp. 505-512
    • Liao, X.1    Xue, Y.2    Carin, L.3
  • 6
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods: support vector learning, 1999.
    • (1999) Advances in kernel methods: Support vector learning
    • Platt, J.1
  • 7
    • 33745158591 scopus 로고    scopus 로고
    • Trecvid: Benchmarking the effectiveness of infomration retrieval tasks on digital video
    • A. Smeaton and P. Over. Trecvid: Benchmarking the effectiveness of infomration retrieval tasks on digital video. In Proc. of CIVR, 2003.
    • (2003) Proc. of CIVR
    • Smeaton, A.1    Over, P.2
  • 8
    • 49549100205 scopus 로고    scopus 로고
    • N. Syed, H. Liu, and K. Sung. Incremental learning with support vector machines. In In Workshop on Support Vector Machines, at the IJCAI, 1999.
    • N. Syed, H. Liu, and K. Sung. Incremental learning with support vector machines. In In Workshop on Support Vector Machines, at the IJCAI, 1999.
  • 9
    • 0003007938 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In Proc. of ICML, pages 999-1006, 2000.
    • (2000) Proc. of ICML , pp. 999-1006
    • Tong, S.1    Koller, D.2
  • 10
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In Proc. of SIGKDD, pages 226-235, 2003.
    • (2003) Proc. of SIGKDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 11
    • 33750714949 scopus 로고    scopus 로고
    • Improving SVM accuracy by training on auxiliary data sources
    • P. Wu and T. G. Dietterich. Improving SVM accuracy by training on auxiliary data sources. In Proc. of ICML, page 110, 2004.
    • (2004) Proc. of ICML , pp. 110
    • Wu, P.1    Dietterich, T.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.