메뉴 건너뛰기




Volumn 35, Issue 8, 2013, Pages 1958-1971

Learning with hierarchical-deep models

Author keywords

deep Boltzmann machines; Deep networks; hierarchical Bayesian models; one shot learning

Indexed keywords

DEEP BOLTZMANN MACHINES; HAND WRITTEN CHARACTER RECOGNITION; HIERARCHICAL BAYESIAN; HIERARCHICAL BAYESIAN MODELS; HIERARCHICAL DIRICHLET PROCESS (HDP); HUMAN MOTION CAPTURE; LEARNING ARCHITECTURES; ONE-SHOT LEARNING;

EID: 84879873133     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2012.269     Document Type: Article
Times cited : (227)

References (47)
  • 5
    • 76849117578 scopus 로고    scopus 로고
    • The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies
    • D.M. Blei, T.L. Griffiths, and M.I. Jordan, "The Nested Chinese Restaurant Process and Bayesian Nonparametric Inference of Topic Hierarchies," J. ACM, vol. 57, no. 2, 2010.
    • (2010) J. ACM , vol.57 , Issue.2
    • Blei, D.M.1    Griffiths, T.L.2    Jordan, M.I.3
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • G.E. Hinton, S. Osindero, and Y. Teh, "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • G.E. Hinton and R.R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, vol. 313, no. 5786, pp. 504-507, 2006. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 34247368422 scopus 로고    scopus 로고
    • Learning overhypotheses with hierarchical bayesian models
    • C. Kemp, A. Perfors, and J. Tenenbaum, "Learning Overhypotheses with Hierarchical Bayesian Models," Developmental Science, vol. 10, no. 3, pp. 307-321, 2006.
    • (2006) Developmental Science , vol.10 , Issue.3 , pp. 307-321
    • Kemp, C.1    Perfors, A.2    Tenenbaum, J.3
  • 20
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng, "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations," Proc. Int'l Conf. Machine Learning, pp. 609-616, 2009.
    • (2009) Proc. Int'l Conf. Machine Learning , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 21
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng, "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations," Proc. 26th Int'l Conf. Machine Learning, pp. 609-616, 2009.
    • (2009) Proc. 26th Int'l Conf. Machine Learning , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 27
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro, "A Stochastic Approximation Method," Annals Math. Statistics, vol. 22, pp. 400-407, 1951.
    • (1951) Annals Math. Statistics , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 33
    • 39749186647 scopus 로고    scopus 로고
    • Describing visual scenes using transformed objects and parts
    • DOI 10.1007/s11263-007-0069-5, Special issue on Machine Learning for Vision, Guest Editors: William Freeman, Pietro Perona and Bernhard Scholkopf
    • E.B. Sudderth, A. Torralba, W.T. Freeman, and A.S. Willsky, "Describing Visual Scenes Using Transformed Objects and Parts," Int'l J. Computer Vision, vol. 77, nos. 1-3, pp. 291-330, 2008. (Pubitemid 351294745)
    • (2008) International Journal of Computer Vision , vol.77 , Issue.1-3 , pp. 291-330
    • Sudderth, E.B.1    Torralba, A.2    Freeman, W.T.3    Willsky, A.S.4
  • 39
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted boltzmann machines using approximations to the likelihood gradient
    • T. Tieleman, "Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient," Proc. 25th Int'l Conf. Machine Learning, 2008.
    • (2008) Proc. 25th Int'l Conf. Machine Learning
    • Tieleman, T.1
  • 40
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for non-parametric object and scene recognition
    • Nov
    • A. Torralba, R. Fergus, and W.T. Freeman, "80 Million Tiny Images: A Large Data Set for Non-Parametric Object and Scene Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1958-1970, Nov. 2008.
    • (2008) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 44
    • 34248578061 scopus 로고    scopus 로고
    • Word learning as bayesian inference
    • F. Xu and J.B. Tenenbaum, "Word Learning as Bayesian Inference," Psychological Rev., vol. 114, no. 2, pp. 245-272, 2007.
    • (2007) Psychological Rev , vol.114 , Issue.2 , pp. 245-272
    • Xu, F.1    Tenenbaum, J.B.2
  • 45
    • 0000355193 scopus 로고
    • Parameter inference for imperfectly observed gibbsian fields
    • L. Younes, "Parameter Inference for Imperfectly Observed Gibbsian Fields," Probability Theory Related Fields, vol. 82, pp. 625-645, 1989.
    • (1989) Probability Theory Related Fields , vol.82 , pp. 625-645
    • Younes, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.