메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3294-3302

Skip-thought vectors

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); INFORMATION SCIENCE; SEMANTICS;

EID: 84965153327     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2320)

References (38)
  • 1
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank
    • Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, 2013.
    • (2013) EMNLP
    • Socher, R.1    Perelygin, A.2    Wu, J.Y.3    Chuang, J.4    Manning, C.D.5    Ng, A.Y.6    Potts, C.7
  • 3
    • 84906922163 scopus 로고    scopus 로고
    • A convolutional neural network for modelling sentences
    • Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for modelling sentences. ACL, 2014.
    • (2014) ACL
    • Kalchbrenner, N.1    Grefenstette, E.2    Blunsom, P.3
  • 4
    • 84961376850 scopus 로고    scopus 로고
    • Convolutional neural networks for sentence classification
    • Yoon Kim. Convolutional neural networks for sentence classification. EMNLP, 2014.
    • (2014) EMNLP
    • Kim, Y.1
  • 5
    • 85097641926 scopus 로고    scopus 로고
    • On the properties of neural machine translation: Encoder-decoder approaches
    • Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural machine translation: Encoder-decoder approaches. SSST-8, 2014.
    • (2014) SSST-8
    • Cho, K.1    Van Merriënboer, B.2    Bahdanau, D.3    Bengio, Y.4
  • 6
    • 84949766261 scopus 로고    scopus 로고
    • Self-adaptive hierarchical sentence model
    • Han Zhao, Zhengdong Lu, and Pascal Poupart. Self-adaptive hierarchical sentence model. IJCAI, 2015.
    • (2015) IJCAI
    • Zhao, H.1    Lu, Z.2    Poupart, P.3
  • 7
    • 84919829999 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Quoc V Le and Tomas Mikolov. Distributed representations of sentences and documents. ICML, 2014.
    • (2014) ICML
    • Le, Q.V.1    Mikolov, T.2
  • 8
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. ICLR, 2013.
    • (2013) ICLR
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 9
    • 84973911532 scopus 로고    scopus 로고
    • Aligning books and movies: Towards story-like visual explanations by watching movies and reading books
    • Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In ICCV, 2015.
    • (2015) ICCV
    • Zhu, Y.1    Kiros, R.2    Zemel, R.S.3    Salakhutdinov, R.4    Urtasun, R.5    Torralba, A.6    Fidler, S.7
  • 10
    • 84926283798 scopus 로고    scopus 로고
    • Recurrent continuous translation models
    • Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In EMNLP, pages 1700-1709, 2013.
    • (2013) EMNLP , pp. 1700-1709
    • Kalchbrenner, N.1    Blunsom, P.2
  • 11
    • 84961291190 scopus 로고    scopus 로고
    • Learning phrase representations using rnn encoder-decoder for statistical machine translation
    • Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. EMNLP, 2014.
    • (2014) EMNLP
    • Cho, K.1    Van Merrienboer, B.2    Gulcehre, C.3    Bougares, F.4    Schwenk, H.5    Bengio, Y.6
  • 12
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.V.3
  • 13
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. ICLR, 2015.
    • (2015) ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 14
    • 84939821078 scopus 로고    scopus 로고
    • Empirical evaluation of gated recurrent neural networks on sequence modeling
    • Junyoung Chung, Caglar Gulcehre, Kyung Hyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. NIPS Deep Learning Workshop, 2014.
    • (2014) NIPS Deep Learning Workshop
    • Chung, J.1    Gulcehre, C.2    Cho, K.H.3    Bengio, Y.4
  • 16
    • 85083950783 scopus 로고    scopus 로고
    • Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
    • Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. ICLR, 2014.
    • (2014) ICLR
    • Saxe, A.M.1    McClelland, J.L.2    Ganguli, S.3
  • 17
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 18
    • 84943796531 scopus 로고    scopus 로고
    • Illinois-lh: A denotational and distributional approach to semantics
    • Alice Lai and Julia Hockenmaier. Illinois-lh: A denotational and distributional approach to semantics. SemEval 2014, 2014.
    • (2014) SemEval 2014
    • Lai, A.1    Hockenmaier, J.2
  • 19
    • 84943783055 scopus 로고    scopus 로고
    • Unal-nlp: Combining soft cardinality features for semantic textual similarity, relatedness and entailment
    • Sergio Jimenez, George Duenas, Julia Baquero, Alexander Gelbukh, Av Juan Dios Bátiz, and Av Mendizábal. Unal-nlp: Combining soft cardinality features for semantic textual similarity, relatedness and entailment. SemEval 2014, 2014.
    • (2014) SemEval 2014
    • Jimenez, S.1    Duenas, G.2    Baquero, J.3    Gelbukh, A.4    Bátiz, A.J.D.5    Mendizábal, A.6
  • 20
    • 84943807276 scopus 로고    scopus 로고
    • The meaning factory: Formal semantics for recognizing textual entailment and determining semantic similarity
    • Johannes Bjerva, Johan Bos, Rob van der Goot, and Malvina Nissim. The meaning factory: Formal semantics for recognizing textual entailment and determining semantic similarity. SemEval 2014, page 642, 2014.
    • (2014) SemEval 2014 , pp. 642
    • Bjerva, J.1    Bos, J.2    Van Der Goot, R.3    Nissim, M.4
  • 21
    • 85107064777 scopus 로고    scopus 로고
    • Ecnu: One stone two birds: Ensemble of heterogenous measures for semantic relatedness and textual entailment
    • Jiang Zhao, Tian Tian Zhu, and Man Lan. Ecnu: One stone two birds: Ensemble of heterogenous measures for semantic relatedness and textual entailment. SemEval 2014, 2014.
    • (2014) SemEval 2014
    • Zhao, J.1    Zhu, T.T.2    Lan, M.3
  • 22
    • 84943797465 scopus 로고    scopus 로고
    • Improved semantic representations from tree-structured long short-term memory networks
    • Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations from tree-structured long short-term memory networks. ACL, 2015.
    • (2015) ACL
    • Tai, K.S.1    Socher, R.2    Manning, C.D.3
  • 23
    • 84964474107 scopus 로고    scopus 로고
    • Grounded compositional semantics for finding and describing images with sentences
    • Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning, and Andrew Y Ng. Grounded compositional semantics for finding and describing images with sentences. TACL, 2014.
    • (2014) TACL
    • Socher, R.1    Karpathy, A.2    Le, Q.V.3    Manning, C.D.4    Ng, A.Y.5
  • 24
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
    • Richard Socher, Eric H Huang, Jeffrey Pennin, Christopher D Manning, and Andrew Y Ng. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In NIPS, 2011.
    • (2011) NIPS
    • Socher, R.1    Huang, E.H.2    Pennin, J.3    Manning, C.D.4    Ng, A.Y.5
  • 25
    • 44949156668 scopus 로고    scopus 로고
    • Using machine translation evaluation techniques to determine sentence-level semantic equivalence
    • Andrew Finch, Young-Sook Hwang, and Eiichiro Sumita. Using machine translation evaluation techniques to determine sentence-level semantic equivalence. In IWP, 2005.
    • (2005) IWP
    • Finch, A.1    Hwang, Y.2    Sumita, E.3
  • 26
    • 84859902208 scopus 로고    scopus 로고
    • Paraphrase identification as probabilistic quasi-synchronous recognition
    • Dipanjan Das and Noah A Smith. Paraphrase identification as probabilistic quasi-synchronous recognition. In ACL, 2009.
    • (2009) ACL
    • Das, D.1    Smith, N.A.2
  • 28
    • 84926190420 scopus 로고    scopus 로고
    • Re-examining machine translation metrics for paraphrase identification
    • Nitin Madnani, Joel Tetreault, and Martin Chodorow. Re-examining machine translation metrics for paraphrase identification. In NAACL, 2012.
    • (2012) NAACL
    • Madnani, N.1    Tetreault, J.2    Chodorow, M.3
  • 29
    • 84923632271 scopus 로고    scopus 로고
    • Discriminative improvements to distributional sentence similarity
    • Yangfeng Ji and Jacob Eisenstein. Discriminative improvements to distributional sentence similarity. In EMNLP, pages 891-896, 2013.
    • (2013) EMNLP , pp. 891-896
    • Ji, Y.1    Eisenstein, J.2
  • 30
    • 85111042767 scopus 로고    scopus 로고
    • Semeval-2014 task 1: Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment
    • Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, and Roberto Zamparelli. Semeval-2014 task 1: Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment. SemEval-2014, 2014.
    • (2014) SemEval-2014
    • Marelli, M.1    Bentivogli, L.2    Baroni, M.3    Bernardi, R.4    Menini, S.5    Zamparelli, R.6
  • 32
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 33
    • 84959196607 scopus 로고    scopus 로고
    • Associating neural word embeddings with deep image representations using fisher vectors
    • Benjamin Klein, Guy Lev, Gil Sadeh, and Lior Wolf. Associating neural word embeddings with deep image representations using fisher vectors. In CVPR, 2015.
    • (2015) CVPR
    • Klein, B.1    Lev, G.2    Sadeh, G.3    Wolf, L.4
  • 34
    • 85083950512 scopus 로고    scopus 로고
    • Deep captioning with multimodal recurrent neural networks (m-rnn)
    • Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan Yuille. Deep captioning with multimodal recurrent neural networks (m-rnn). ICLR, 2015.
    • (2015) ICLR
    • Mao, J.1    Xu, W.2    Yang, Y.3    Wang, J.4    Yuille, A.5
  • 36
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 37
    • 84875872773 scopus 로고    scopus 로고
    • Baselines and bigrams: Simple, good sentiment and topic classification
    • Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good sentiment and topic classification. In ACL, 2012.
    • (2012) ACL
    • Wang, S.1    Manning, C.D.2
  • 38
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-sne
    • Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 2008.
    • (2008) JMLR
    • Van Der Maaten, L.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.