메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 59-68

Multi-cue zero-shot learning with strong supervision

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; SEMANTICS;

EID: 84986309960     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.14     Document Type: Conference Paper
Times cited : (159)

References (55)
  • 2
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • 2, 3, 4, 5, 6
    • Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of Output Embeddings for Fine-Grained Image Classification. In CVPR, 2015.
    • (2015) CVPR
    • Akata, Z.1    Reed, S.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 3
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • 3
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002.
    • (2002) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 4
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • 2, 6
    • J. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting deep zero-shot convolutional neural networks using textual descriptions. In ICCV, 2015.
    • (2015) ICCV
    • Ba, J.1    Swersky, K.2    Fidler, S.3    Salakhutdinov, R.4
  • 5
    • 85162050606 scopus 로고    scopus 로고
    • Label embedding trees for large multi-class tasks
    • 2
    • S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, 2010.
    • (2010) NIPS
    • Bengio, S.1    Weston, J.2    Grangier, D.3
  • 6
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • 3
    • X. Chen and A. Yuille. Articulated pose estimation by a graphical model with image dependent pairwise relations. In NIPS, 2014.
    • (2014) NIPS
    • Chen, X.1    Yuille, A.2
  • 7
    • 84973879622 scopus 로고    scopus 로고
    • P-cnn: Pose-based cnn features for action recognition
    • 3
    • G. Cheron, I. Laptev, and C. Schmid. P-cnn: Pose-based cnn features for action recognition. In ICCV, 2015.
    • (2015) ICCV
    • Cheron, G.1    Laptev, I.2    Schmid, C.3
  • 8
    • 85037338954 scopus 로고    scopus 로고
    • Generating typed dependency parses from phrase structure parses
    • 2
    • M.-C. De Marneffe, B. MacCartney, and C. Manning. Generating typed dependency parses from phrase structure parses. In LREC, 2006.
    • (2006) LREC
    • De Marneffe, M.-C.1    MacCartney, B.2    Manning, C.3
  • 11
    • 84866719272 scopus 로고    scopus 로고
    • Discovering localized attributes for fine-grained recognition
    • 2
    • K. Duan, D. Parikh, D. J. Crandall, and K. Grauman. Discovering localized attributes for fine-grained recognition. In CVPR, 2012.
    • (2012) CVPR
    • Duan, K.1    Parikh, D.2    Crandall, D.J.3    Grauman, K.4
  • 12
    • 77956006784 scopus 로고    scopus 로고
    • Attribute-centric recognition for cross-category generalization
    • 2
    • A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition for cross-category generalization. In CVPR, 2010.
    • (2010) CVPR
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3
  • 14
    • 33750397657 scopus 로고    scopus 로고
    • Weakly supervised scale-invariant learning of models for visual recognition
    • 3
    • R. Fergus, P. Perona, and A. Zisserman. Weakly supervised scale-invariant learning of models for visual recognition. IJCV, 71, 2007.
    • (2007) IJCV , vol.71
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 15
    • 70450219358 scopus 로고    scopus 로고
    • Learning visual attributes
    • 2
    • V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, 2007.
    • (2007) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 17
    • 84906482165 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • 2
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, 2014.
    • (2014) ECCV
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 18
    • 84965148420 scopus 로고    scopus 로고
    • Are you talking to a machine dataset and methods for multilingual image question answering
    • 2
    • H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and W. Xu. Are you talking to a machine dataset and methods for multilingual image question answering. NIPS, 2015.
    • (2015) NIPS
    • Gao, H.1    Mao, J.2    Zhou, J.3    Huang, Z.4    Wang, L.5    Xu, W.6
  • 19
    • 0000679216 scopus 로고
    • Distributional structure
    • 2
    • Z. Harris. Distributional structure. Word, 10 (23), 1954.
    • (1954) Word , vol.10 , Issue.23
    • Harris, Z.1
  • 22
    • 84937843643 scopus 로고    scopus 로고
    • Deep fragment embeddings for bidirectional image sentence mapping
    • 2
    • A. Karpathy, A. Joulin, and F. Li. Deep fragment embeddings for bidirectional image sentence mapping. In NIPS, 2014.
    • (2014) NIPS
    • Karpathy, A.1    Joulin, A.2    Li, F.3
  • 23
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • 2, 3
    • A. Karpathy and F. Li. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Karpathy, A.1    Li, F.2
  • 24
    • 84965125568 scopus 로고    scopus 로고
    • Fisher vectors derived from hybrid Gaussian-laplacian mixture models for image annotation
    • 2
    • B. Klein, G. Lev, G. Sadeh, and L. Wolf. Fisher vectors derived from hybrid Gaussian-laplacian mixture models for image annotation. CVPR, 2015.
    • (2015) CVPR
    • Klein, B.1    Lev, G.2    Sadeh, G.3    Wolf, L.4
  • 25
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • 3
    • N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers for face verification. In ICCV, 2009.
    • (2009) ICCV
    • Kumar, N.1    Berg, A.C.2    Belhumeur, P.N.3    Nayar, S.K.4
  • 26
    • 84925402963 scopus 로고    scopus 로고
    • Attribute-based classification for zero-shot visual object categorization
    • 2, 3, 4
    • C. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. In TPAMI, 2013.
    • (2013) TPAMI
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 27
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection with interleaved categorization and segmentation
    • 3
    • B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. IJCV, 77, 2008.
    • (2008) IJCV , vol.77
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 28
    • 84943788934 scopus 로고    scopus 로고
    • Linguistic regularities in sparse and explicit word representations
    • 4
    • O. Levy and Y. Goldberg. Linguistic regularities in sparse and explicit word representations. In CONLL, 2014.
    • (2014) CONLL
    • Levy, O.1    Goldberg, Y.2
  • 29
    • 84973896625 scopus 로고    scopus 로고
    • Ask your neurons: A neural-based approach to answering questions about images
    • 2
    • M. Malinowski, M. Rohrbach, and M. Fritz. Ask your neurons: A neural-based approach to answering questions about images. ICCV, 2015.
    • (2015) ICCV
    • Malinowski, M.1    Rohrbach, M.2    Fritz, M.3
  • 30
    • 85083950512 scopus 로고    scopus 로고
    • Deep captioning with multimodal recurrent neural networks (m-rnn)
    • 2
    • J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. L. Yuille. Deep captioning with multimodal recurrent neural networks (m-rnn). In ICLR, 2015.
    • (2015) ICLR
    • Mao, J.1    Xu, W.2    Yang, Y.3    Wang, J.4    Huang, Z.5    Yuille, A.L.6
  • 32
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • 2, 4, 5
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 33
    • 84926179397 scopus 로고    scopus 로고
    • Linguistic regularities in continuous space word representations
    • 4
    • T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word representations. In Proceedings of NAACL-HLT, 2013.
    • (2013) Proceedings of NAACL-HLT
    • Mikolov, T.1    Yih, W.-T.2    Zweig, G.3
  • 35
    • 84973896919 scopus 로고    scopus 로고
    • Person recognition in personal photo collections
    • 2
    • S. Oh, R. Benenson, M. Fritz, and B. Shiele. Person recognition in personal photo collections. In ICCV, 2015.
    • (2015) ICCV
    • Oh, S.1    Benenson, R.2    Fritz, M.3    Shiele, B.4
  • 36
    • 84856670612 scopus 로고    scopus 로고
    • Relative attributes
    • 2
    • D. Parikh and K. Grauman. Relative attributes. In ICCV, 2011.
    • (2011) ICCV
    • Parikh, D.1    Grauman, K.2
  • 37
    • 84973871157 scopus 로고    scopus 로고
    • Fine-grained activity recognition with holistic and pose based features
    • 3
    • L. Pishchulin, M. Andriluka, and B. Schiele. Fine-grained activity recognition with holistic and pose based features. In GCPR, 2014.
    • (2014) GCPR
    • Pishchulin, L.1    Andriluka, M.2    Schiele, B.3
  • 38
    • 84962816362 scopus 로고    scopus 로고
    • Image question answering: A visual semantic embedding model and a new dataset
    • 2
    • M. Ren, R. Kiros, and R. Zemel. Image question answering: A visual semantic embedding model and a new dataset. NIPS, 2015.
    • (2015) NIPS
    • Ren, M.1    Kiros, R.2    Zemel, R.3
  • 39
    • 80052892795 scopus 로고    scopus 로고
    • Evaluating knowledge transfer and zero-shot learning in a large-scale setting
    • 2, 5
    • M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In CVPR, 2011.
    • (2011) CVPR
    • Rohrbach, M.1    Stark, M.2    Schiele, B.3
  • 40
    • 0036152936 scopus 로고    scopus 로고
    • Learning words from sights and sounds: A computational model
    • 1
    • D. K. Roy and A. P. Pentland. Learning words from sights and sounds: A computational model. Cognitive science, 26 (1): 113-146, 2002.
    • (2002) Cognitive Science , vol.26 , Issue.1 , pp. 113-146
    • Roy, D.K.1    Pentland, A.P.2
  • 42
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • 2
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, 2015.
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 43
    • 77953177673 scopus 로고    scopus 로고
    • Joint learning of visual attributes, object classes and visual saliency
    • 3
    • G. Wang and D. Forsyth. Joint learning of visual attributes, object classes and visual saliency. In ICCV, 2009.
    • (2009) ICCV
    • Wang, G.1    Forsyth, D.2
  • 44
    • 80052913382 scopus 로고    scopus 로고
    • A discriminative latent model of object classes and attributes
    • 3
    • Y. Wang and G. Mori. A discriminative latent model of object classes and attributes. In ECCV, 2010.
    • (2010) ECCV
    • Wang, Y.1    Mori, G.2
  • 46
    • 77955654853 scopus 로고    scopus 로고
    • Large scale image annotation: Learning to rank with joint word-image embeddings
    • 2
    • J. Weston, S. Bengio, and N. Usunier. Large scale image annotation: Learning to rank with joint word-image embeddings. ECML, 2010.
    • (2010) ECML
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 47
    • 84867117593 scopus 로고    scopus 로고
    • Wsabie: Scaling up to large vocabulary image annotation
    • 2
    • J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In IJCAI, 2011.
    • (2011) IJCAI
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 48
    • 84904687911 scopus 로고    scopus 로고
    • Beyond pascal: A benchmark for 3D object detection in the wild
    • 2
    • Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3D object detection in the wild. In WACV, 2014.
    • (2014) WACV
    • Xiang, Y.1    Mottaghi, R.2    Savarese, S.3
  • 49
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • 3
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. TPAMI, 35, 2013.
    • (2013) TPAMI , vol.35
    • Yang, Y.1    Ramanan, D.2
  • 50
    • 84855413670 scopus 로고    scopus 로고
    • Attribute-based transfer learning for object categorization with zero or one training example
    • 2
    • X. Yu and Y. Aloimonos. Attribute-based transfer learning for object categorization with zero or one training example. In ECCV, 2010.
    • (2010) ECCV
    • Yu, X.1    Aloimonos, Y.2
  • 51
    • 84956617559 scopus 로고    scopus 로고
    • Partbased R-CNNs for fine-grained category detection
    • 2, 3, 6
    • N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Partbased R-CNNs for fine-grained category detection. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 54
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • 3
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS. 2014.
    • (2014) NIPS.
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5
  • 55
    • 84866667680 scopus 로고    scopus 로고
    • Face detection, pose estimation, and landmark localization in the wild
    • 3
    • X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. In CVPR, 2012.
    • (2012) CVPR
    • Zhu, X.1    Ramanan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.